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ABSTRACT Most vector-borne zoonotic pathogens are transmitted among several host species, but
different species vary considerably in their importance to pathogen transmission, at least partially
because they vary in their propensity to infect feeding vectors. This propensity is often called realized
reservoir competence. Realized reservoir competence is the product of 1) the probability the
individual host is infected, i.e., infection prevalence, and 2) the probability that if the host is infected,
it will transmit the infection to a feeding vector, or infectivity. Prevalence varies in space and time,
whereas infectivity may be a property of the host species. Both prevalence and infectivity are
ecologically and epidemiologically important, but measuring them simultaneously is difÞcult. We
present a probabilistic model that separately estimates host infection prevalence and infectivity from
data on the infection status of vectors collected from individual hosts, data generally used to measure
realized reservoir competence. We then consider how imperfect diagnostic tests (i.e., false negatives
and positives) inßuence these probabilitiesÑestimates of prevalence and infectivity are fairly robust
to false negatives, but not to false positives. We thus extend the model to estimate the rate of false
positives in order to improve estimates of prevalence and infectivity. We illustrate these methods by
reanalyzing data from LoGiudice et al. (2003; Proc. Natl. Acad. Sci. U.S.A. 100: 567Ð571) on the
reservoir competence of ten vertebrate hosts of Borrelia burgdorferi, the agent of Lyme disease. We
Þnd that these vertebrate hosts vary both in prevalence and infectivity and that both values are highly,
positively correlated among species.
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Most pathogens of animals can infect multiple host
species, that is, they are host generalists (Woolhouse
et al. 2001). Different host species, however, vary
considerably in their importance to pathogen trans-
mission and the dynamics of infection. As a conse-
quence, overall disease incidenceÑand risk of infec-
tion to humans in the case of zoonotic diseasesÑcan
be thought of as a function of the host communityÕs
composition (Van Buskirk and Ostfeld 1995, Ostfeld
and Keesing 2000, Keesing et al. 2006). To understand
this relationship and predict actual disease risk, we
must be able to measure the contributions of different
species to overall rates of transmission.

Mather et al. (1989) introduced the concept of
“reservoir potential” as a metric of the contributions
of different rodent hosts to transmission of the Lyme
disease agent, Borrelia burgdorferi, although this
concept is equally relevant to other vector-borne
zoonoses. Reservoir potential is deÞned as the av-
erage number (or proportion) of infected vectors
produced by an individual of a given host species
(Fig. 1). It is a product of the number (or propor-

tion) of vectors fed by an individual of a given
species and “realized reservoir competence” (Schauber
and Ostfeld 2002, LoGiudice et al. 2003)Ñthe proba-
bility that a vector feeding on that host species
becomes infected. A species with high reservoir
potential is one upon which a great number of vec-
tors successfully feed, and from which many be-
come infected with the pathogen. A host species
may have low reservoir potential because it feeds
few vectors or because it is unlikely to transmit the
pathogen to them (low realized reservoir compe-
tence), or both. A host species may have low real-
ized reservoir competence, in turn, because indi-
viduals are rarely infected (low prevalence) or
because when they are infected they are unlikely to
transmit the infection to feeding vectors (Fig. 1), a
property we call infectivity (“host infectivity” in
Kahl et al. 2002).

There are two general approaches to measuring
reservoir competence for Lyme disease. In the Þrst
approach, an investigator collects host animals from
the Þeld and brings them into the laboratory to collect
engorged ticks (e.g., LoGiudice et al. 2003) or feeds
uninfected xenodiagnostic ticks upon them (e.g.,
Mather et al. 1989, Levin et al. 1995). These fed ticks
are then tested for B. burgdorferi infection, usually
after molting, to provide a direct measure of realized
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reservoir competence (Fig. 1). These studies produce
an ecologically relevant metric, but they are difÞcult
to generalize from because realized reservoir compe-
tence is partially determined by prevalence, which
varies in space and time.

The second approach is to Þrst experimentally in-
fect hosts and then, after a given interval, feed xeno-
diagnostic ticks on these known-infected hosts (e.g.,
Markowski et al. 1998). These ticks are similarly tested
forB.burgdorferi infection to provide a direct measure
of the probability an infected host will transmit B.
burgdorferi to a feeding tick (infectivity). Measured
values of infectivity reßect host physiology, immuno-
logical response(s), and other factors that determine
host permissiveness to B. burgdorferi. It seems reason-
able to assume that infectivity is consistent among
members of a species or, in the face of host immune
responses, that it at least follows a consistent temporal
trend. IntraspeciÞc consistency makes this method
useful for comparing the relative potential importance
of different species to B. burgdorferi transmission.
However, high estimates of infectivity when hosts are
artiÞcially inoculated cannot demonstrate that indi-
viduals of a given species play an important role in
pathogen transmission in nature. To establish species-
speciÞc roles in natural B. burgdorferi transmission,
one also must estimate natural infection prevalence in
each host species.

Unfortunately, the diagnostic tests available for de-
tectingB. burgdorferi in vertebrate tissues are not very
sensitive, although improving (Eisendle et al. 2007,
Wilske et al. 2007) and are thus liable to underestimate
host infection prevalence. Serological tests only doc-
ument exposure to a pathogen, not infection. The tests
for tick infection status are thought to be better, al-

though to our knowledge, no published information
exists on sensitivity or speciÞcity of any of the several
commonly used diagnostic tests of B. burgdorferi in
ticksÑdark Þeld microscopy (Junttila et al. 1999,
Richter et al. 2000), direct ßuorescent antibody assays,
enzyme-linked immunosorbent assays (Burkot et al.
1994), and diagnostic and quantitative polymerase
chain reaction (PCR) targeting the ßagellin gene
(Johnson et al. 1992, Schmidt et al. 1996, Junttila et al.
1999, Zeidner et al. 2001, Soares et al. 2006), the recA
gene (Mommert et al. 2001, Wang et al. 2003), the p66
gene (Mommert et al. 2001), the outer surface protein
A gene (Persing et al. 1990), and several targets among
the ribosomal genes (Kurtenbach et al. 1998, Kurte-
nbach et al. 2002, LayÞeld and Guilfoile 2002, Court-
ney et al. 2004, Schulze et al. 2005, Ornstein and
Barbour 2006). Although several methods (e.g., quan-
titative real time PCR; Courtney et al. 2004, Ornstein
and Barbour 2006) have been shown to detect van-
ishingly small amounts of bacteria from culture, it is
not clear that this analytic sensitivity translates into
the ability to correctly identify infected ticks (sensi-
tivity in the epidemiological sense). Moreover, with-
out a “gold standard” forB. burgdorferi infection, it has
been impossible to estimate rates of false positives
(imperfect speciÞcity). Even a few false negative or
false positive host test results could negatively or pos-
itively bias estimates of prevalence, particularly when
sample sizes are low because of difÞculties sampling
rare and/or trap-shy species. Similarly, falsely nega-
tive or positive ticks would tend to depress or inßate
estimates of infectivity. Thus, in addition to the meth-
odological difÞculties producing ecologically relevant
measures of host prevalence and infectivity, it seems
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Fig. 1. Relationship among the components of reservoir potential (sensu Mather et al. 1989) and the factors that may
inßuence each. DeÞned in the context of Lyme disease (see Kahl et al. 2002), these terms assume a permissive vector, such
as Ixodes scapularis Say.
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inevitable that inaccurate diagnostic tests will bias
these estimates.

Our purpose in this article is to provide a method for
estimating the contributions of different host species
to disease transmission or risk by separating the effects
of prevalence and infectivity, and a means of account-
ing for imperfect diagnostic tests. We present a prob-
abilistic model that uses infection data on fed ticks (or
other vectors) from Þeld-caught animals to decom-
pose estimates of realized reservoir competence into
their component parts: prevalence and infectivity
(Fig. 1). We reanalyze data from LoGiudice et al.
(2003) on the realized reservoir competence of 10
species (or groups of species in some cases) to esti-
mate the relative contributions of prevalence and in-
fectivity in determining ecological roles of host spe-
cies in producing infected ticks. We then show how
imperfect diagnostic tests of infection, particularly
false positives, can bias metrics of reservoir compe-
tence, and then how false positive rates can be esti-
mated from multispecies data to improve estimates of
prevalence and infectivity.

Materials and Methods

RealizedReservoirCompetenceData.LoGiudice et
al. (2003) captured several (n � 4Ð51) individuals of
each of 10 vertebrate species (Table 1) from wild pop-
ulations, brought them into the laboratory for 2Ð3 d to
collect the ticks feeding on each animal after they had
Þnished their bloodmeal. These ticks were allowed to
molt and then screened for B. burgdorferi infection by
using a direct immunoßuorescent assay. Realized reser-
voir competence was then estimated as the number of
positive ticks from an individual host divided by the
number of ticks tested from that individual, averaged
over all individuals of a species. If the number of ticks
tested is the same for each animal, this amounts to di-
vidingthenumberofpositiveticksbythenumberofticks

tested. As is often the case for vector burdens on indi-
vidual hosts (e.g., Woolhouse et al. 1997), the number of
ticks successfully recovered, molted, and tested from
each animal varied considerably, and was often just one
or two. LoGiudice et al. (2003) reasoned that individual
hosts from which fewer than Þve ticks were recovered
and tested would unacceptably bias realized reservoir
competence estimates, so these individuals were ex-
cluded from analyses. In addition to this loss of data, the
relative importance of prevalence and infectivity to
these estimates cannot be resolved. The problem is that
it is impossible to determine whether an individual host
is infected when all of the ticks collected from it test
negative. This problem, of course, becomes worse when
there are fewer and fewer ticks collected from each
individual. If we take a probabilistic approach, however,
wecanuseall of thedataavailable, even individuals from
which a single tick is tested, and simultaneously estimate
both prevalence and infectivity.
Statistical Analyses.We begin with the simplest case

where we make the assumption that the test forB. burg-
dorferi is perfect, that is, it produces no false negatives or
false positives (we relax this assumption below). We
then simply need to understand the ways in which a tick
can be infected by an individual host of a given species
or remain uninfected (dashed box in Fig. 2). The prob-
ability that a single tick is positive is ��, where � is the
probability the host is infected (prevalence) and � is the
probability that the individual host infects the tick, given
thatthehost is infected(infectivity).Therearetwopaths
that can lead to an uninfected tick. The tick might feed
on an infected host but remain uninfected, with proba-
bility �(1 � �), or its host might be uninfected, which
occursatprobability(1��).Thesumofthesetwopaths
is the probability of observing a single uninfected tick.

Often, however, many ticks feed on a host at the
same time. Of these n feeding ticks, k of them are
infected,wherekcanrange from0ton.Wecanspecify
the probability that k of n ticks feeding on a given host

Table 1. Values of prevalence (�) and infectivity (�) for ten species of Northeastern vertebrates estimated from data by LoGiudice
et al. 2003, either assuming the diagnostic test was perfect (no false negatives or false positives; left) or allowing for false positives (right)

Assuming perfect test Allowing imperfect speciÞcity (false positives)
Realized
reservoir

competence
from

LoGiudice
et al.

Prevalence (�) Infectivity (�) ��¤ Prevalence (�) Infectivity (�) ��

Species N# ML Estimate (SI)� ML Estimate (SI) ML Estimate (SI) ML Estimate (SI) N#

White-footed mouse 35 1.0 (0.940Ð1.0) 0.914 (0.859Ð0.959) 0.914 1.0 (0.940Ð1.0) 0.911 (0.857Ð0.958) 0.911 0.921 27
Eastern chipmunk 51 0.971 (0.864Ð1.0) 0.569 (0.512Ð0.626) 0.552 0.868 (0.720Ð0.966) 0.659 (0.593Ð0.720) 0.572 0.550 43
White-tailed deer 19 0.311 (0.103Ð0.606) 0.150 (0.057Ð0.290) 0.047 0.088 (0.001Ð0.352) 0.222 (0.029Ð0.513) 0.020 0.046 5
Raccoon 13 1.0 (0.430Ð1.0) 0.017 (0.005Ð0.040) 0.017 0.0 (0.0Ð1.0) 0.257 (0.0Ð1.0) NA 0.013 13
Virginia opossum 18 0.593 (0.261Ð0.990) 0.040 (0.018Ð0.081) 0.024 0.0 (0.0Ð1.0) 0.243 (0.0Ð0.200) NA 0.026 19
Striped skunk 4 0.530 (0.106Ð0.945) 0.191 (0.096Ð0.318) 0.101 0.251 (0.013Ð0.738) 0.324 (0.149Ð0.526) 0.081 0.097 4
Short-tailed shrew 42 0.831 (0.690Ð0.934) 0.505 (0.455Ð0.555) 0.420 0.588 (0.423Ð0.740) 0.761 (0.700Ð0.816) 0.447 0.418 41
Masked shrew 11 0.701 (0.372Ð0.953) 0.537 (0.424Ð0.649) 0.377 0.528 (0.222Ð0.831) 0.627 (0.477Ð0.753) 0.331 0.512 7
Red & grey squirrel 2�7 0.831 (0.482Ð1.0) 0.061 (0.041Ð0.086) 0.051 0.279 (0.047Ð0.648) 0.081 (0.034Ð0.148) 0.023 0.147 2�7

SpeciÞcity 0.968 (0.949Ð0.986)

� Maximum likelihood estimate (support intervalsÑparameter values � 2 log likelihood units from MLE).
¤ Realized reservoir competence is derived by multiplying � and �.
# In some cases, our sample sizes were higher because we were able to use individual hosts from which few ticks were recovered, whereas

LoGiudice et al. restricted their analyses to individuals from which 5 or more molted ticks were collected and tested.
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are infected in terms of prevalence (�) and infectivity
(�) with the binomial as

��niki��ki�1 � ��ni�ki � �1 � ���niki�0ki1ni�ki.

If any of the n ticks are infected (i.e., k� 1), the term to
the right of the plus sign collapses to zero because the
host must be infected in order for the tick to have been
infected. If none of the n ticks are infected (k� 0), then
either the host was infected but did not transmit the
infection,whichisdescribedbythetermtotheleftof the
plus sign, or it was uninfected, described by the term on
theright.Whenk�0wecannotestablishwhetherornot
the host was infected and so the probabilities of both
events must be taken into account.

Prevalence is a population-level parameter, speciÞc
to a given population of a particular host species.
Infectivity, too, may be viewed as a populationÑif not
speciesÑspeciÞc constant, as discussed above. To es-
timate the population-level values of � and � for a
given species we simply Þnd the values of each that
maximize the likelihood of observing the ki of ni B.
burgdorferi-infected ticks on each host, i, for i� 1, 2,
3, . . . N, summed over all of the N hosts in the sample.
The likelihood of the parameter estimates of � and �
given the data are

���, �, � data� � �
i�1

N ���niki��ki�1 � ��ni�ki

� �1 � ���niki�0ki1ni�ki� . [1]

Again, the second term on the right-hand side of equa-
tion 1 is zero if any of the ticks on host i are positive.
In the appendix we provide code for Þnding the max-
imum likelihood estimates of � and � using R (R
Development Core Team 2005).

This method of estimating prevalence and infec-
tivity from infection data for fed ticks makes two
important assumptions. First, we assume all larval
ticks feeding on hosts are uninfected. Previous stud-
ies have found little or no vertical transmission of B.
burgdorferi (Piesman et al. 1986, Patrican 1997),
supporting this assumption. Second, we assume that
the diagnostic test is perfectly speciÞc and sensitive,
that is, there are no false positives or false negatives,
respectively. If these values were known, they could
be incorporated into the likelihood. As noted in the
introduction, without a gold standard it is not pos-
sible to assess rates of false negatives and false pos-
itives. We therefore investigated the effects of false
negative and false positive tests of tick infection
status on estimates of prevalence and infectivity by
simulating 1,000 “data sets” at each of nine levels of
sensitivity (Fig. 3a and c) with speciÞcity held con-
stant at 1, and at nine levels of speciÞcity (Fig. 3b
and d), with sensitivity held constant at 1, for a total
of 18,000 data sets. Each data set consisted of 20
hosts, each of which was randomly “infected” (or
not) with probability � Prevalence. The 20 hosts
were then assigned burdens of feeding vectors (V)
by random draws from a Poisson distribution with
mean � 10. The infection status of these feeding
vectors was then determined by random draws from
a binomial distribution with n � V trials and the
probability of success (i.e., infection) in each trial
equal to Infectivity � Sensitivity � (1 � Infectivi-
ty)(1 � Specificity) if the host was infected and (1 �
Specificity) if the host was not. We then estimated
the parameters � and � for each data set by using
equation 1 and compared these estimates with the
“true” values. The importance of imperfect sensi-
tivity and speciÞcity was explored with several lev-
els of true Prevalence and Infectivity, but we present
only the results for Prevalence and Infectivity � 0.5.

Studies of realized reservoir competence often
gather data from multiple host species at the same
time. If we assume that false positives are a product of
the diagnostic test rather than speciÞc to a given host
species, we can then use such multihost species data
sets to estimate a common test speciÞcity (�1 � rate
of false positives). This assumption seems reasonable,
particularly when the fed larvae are allowed to digest
the host bloodmeal and molt, retaining little if any
host-speciÞc factors that might interfere with the di-
agnostic test, as was the case in the LoGiudice et al.
(2003) data.

The logic to estimating speciÞcity in addition to
prevalence and infectivity is the same as in the
simple case above except that now we 1) estimate
species-speciÞc prevalence and infectivity parame-
ters �j and �j from a data set of infection status of
ticks fed on several different species; and 2) there
is now a common diagnostic test-speciÞc parameter,
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+

−
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Fig. 2. Theprobability tree leading toapositiveornegative
tick (dashed inner box) and test result (entire Þgure). � is the
probability the host is infected (i.e., prevalence), � is the prob-
ability an infected host transmits the infection to the tick (in-
fectivity), Sensitivity is the probability an infected tick tests
positive (1 � false negative rate), and Specificity is the proba-
bility a negative vector tests negative (1 � false positive rate).
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Sp, that allows for some false positives. The proba-
bility that a tick that fed on host species j (for
species j� 1, 2, 3, . . . S) becomes infected and tests
positive is �j�j, again assuming the test is perfectly
sensitive, although estimates are fairly robust to
violations of this assumption (see Fig. 3). The prob-
ability that a tick that feeds on an infected individual
of host species j, does not become infected, but still
tests positive is �j(1 � �j)(1 � Sp). Lastly, the
probability that a tick feeds on an uninfected host
of species j and still tests positive is (1 � �j)(1 � Sp).
The likelihood becomes

���j, �j, Sp � data� �

�
j

S �
i

N ��j�nijkij� 	�j � �1 � �j��1 � Sp�
kij

� 	�1 � �j� � �1 � �j��1 � Sp�
nij�kij � �1 � �j�

� �nijkij� 	1 � Sp
kij Spnij�kij� . [2]

Results

The maximum likelihood estimates of prevalence
and infectivity, and their product, realized reservoir
competence, vary considerably among species (Table
1). Some species tend not to be infected (e.g., white-
tailed deer and striped skunks), whereas others are
frequently infected (e.g., white-footed mice, eastern
chipmunks). Species vary even more in terms of in-

fectivity. White-footed mice have a tremendous pro-
pensity to transmit B. burgdorferi to feeding ticks,
whereas all others species have intermediate (e.g.,
eastern chipmunks and shrews) or low levels of in-
fectivity (e.g., white-tailed deer and squirrels), which
is in general agreement with previous studies
(Donahue et al. 1987, Mather and Mather 1990,
Mather et al. 1990, Telford et al. 1990, Norris et al. 1996,
Ouellette et al. 1997, LoGiudice et al. 2003, Ullmann et
al. 2003, but see Lane et al. 2005). The actual param-
eter estimates, however, can be strongly biased if we
do not account for imperfections in the diagnostic test
of tick infection status.

The simulation results demonstrated that false neg-
atives are not as great a problem as false positives.
Estimates of prevalence and infectivity were fairly
robust to imperfectly sensitive diagnostic tests. The
bulk of prevalence estimates clustered around the true
value with as many as one in Þve positive vectors
testing negative (Sensitivity� 0.8; Fig. 3a). (It is worth
noting that the apparently wide range of prevalence
estimates is a result of the simulation methods. Each
simulated sample was drawn from a population with
true prevalence � 0.5, but the actual prevalence
within the sample varied. Simply scoring individual
hosts as infected or not based on whether any ticks
tested positive would have yielded similar levels of
variability.) Infectivity became biased slightly low
only when rates exceeded one in 40 false negatives
(Sensitivity � 0.975; Fig. 3c).

These estimates are much more sensitive to imper-
fect speciÞcity (false positives; Fig. 3b and d). Esti-
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mated prevalence is biased high when the false pos-
itive rate exceeds �1 in 100 (Specificity � 0.99) and
become wholly inaccurate by one in 20 (Specificity�
0.95). Essentially false positives cause uninfected hosts
to seem positiveÑjust one positive vector is evidence
that the host it fed upon was infected. As such, the
apparent prevalence is biased high. Conversely, in-
fectivity is biased low with increasing rates of false
positives. Falsely positive hosts do not, of course,
transmit the (apparent) infection to many vectors, so
only one or two of potentially many ticks test positive.
These rare “transmission events” seem to be the result
of low infectivity and thus diminish estimates of �. In
essence, it becomes impossible to distinguish whether
a host species is frequently infected, but rarely trans-
mits the infection to feeding vectors or whether vec-
tors feeding on uninfected hosts falsely test positive.
These biases are most pronounced when true preva-
lence is low and true infectivity is high (simulation
results not shown). (In the case where false positives
rates are higher than actual infectivity, the estimate of
� will instead be biased upward.)

Incorporating false positives into our analyses of the
LoGiudice et al. (2003) data dramatically improved our
model Þt (� AkaikeÕs Information Criterion adjusted for
small sample size [AICc] � 250), supporting the con-
clusion that the direct immunoßuorescent assay is not
perfectly speciÞc. We estimate speciÞcity at �0.97,
meaning that three of 100 negative ticks are incorrectly
scored as positive. Allowing for these false positives had
the effect of reducing estimates of prevalence for almost
all species, and estimates of infectivity generally in-
creased. For two species, raccoons and opossums, the
estimates are uninformative (Table 1). Individuals of
these two species tended to have a single tick test pos-
itive; thus, they seemed to have high prevalence and low
infectivity. With an imperfectly speciÞc diagnostic test,
however, these results may have instead been due to
false positives. This suggests a limit to our ability to
estimate prevalence and infectivity when realized res-
ervoircompetenceconvergesontheestimated falsepos-
itive rate (1 � Specificity). An experimental infection
study of raccoons found that infectivity is, in fact, at or
very near zero (Norris et al. 1996).

Discussion

Realized reservoir competenceÑthe chance that a
tick feeding on a particular free-ranging host species
will become infectedÑis an ecologically and epide-
miologically relevant metric. Species vary consider-
ably in their realized reservoir competence (e.g., Lo-
Giudice et al. 2003; Table 1), which in turn strongly
inßuences the dynamics of and risk from B. burgdor-
feri.We can gain insights into why species vary in their
ability to infect larval ticks by decomposing realized
reservoir competence into prevalence and infectivity.

Mammal species have a wide-range of levels of B.
burgdorferi prevalence (Table 1). This may reßect dif-
ferences in exposure to infected nymphs (but see
Mather et al. 1989) or species-speciÞc differences in
susceptibility to B. burgdorferi infection. Low infection

prevalence in some host species, such as white-tailed
deer and striped skunks, that likely are repeatedly inoc-
ulated by infected nymphs (Magnarelli et al. 2004) sug-
gests an innate immunity to B. burgdorferi. Immunity
based on the complement pathway has been described
for mule deer (Odocoileus hemionus) and western fence
lizards (Sceloporus occidentalis) (Ullmann et al. 2003).
What is clear is that not all species are equally infected.
Nor are they equally infectiousÑwe found considerable
variability in infectivity. Infected white-footed mice are
very likely to transmit B. burgdorferi to feeding larvae,
whereas other hosts, such as squirrels, are generally
dead-end hosts for the bacterium. Thus, even if infection
prevalence is extremely high for all species, community
compositionwill stillbe important tooverall incidenceof
Lymedisease(LoGiudiceetal.2003,Keesingetal.2006).

Interestingly, prevalence and infectivity are
strongly positively correlated across the host species
(r � 0.88, t5df � 4.1, P � 0.009). This correlation
suggests that both quantities are inßuenced by inher-
ent physiological, likely immunological, features of
each host, or by their rate of exposure to infected
nymphs. Whatever keeps hosts infected and bactere-
mia high in the hostÑlow rates of clearance by the
immune system or high rates of (re)infectionÑwill
tend to increase the probability that the host transmits
the infection to feeding larvae. Put another way, a
cleared infection cannot be transmitted. The ability of
infected white-footed mice to infect larval ticks de-
cays with time, since infection (Donahue et al. 1987,
Shih et al. 1995, Lindsay et al. 1997), although infec-
tions are not necessarily cleared (Hofmeister et al.
1999). The infectivity of meadow voles (Markowski et
al. 1998, Anderson et al. 2006) and rice rats (Levin et
al. 1995) also declines with time, suggesting a common
pattern. Moreover, infectivity seems to differ between
geographic locations (e.g., our estimate of � � 0.9 for
white-footed mice in New York, compared with a
maximal estimate of � � 0.3 in Ontario; Lindsay et al.
1997), in a way that is at least broadly consistent with
differences in exposure to infected ticks. Thus, we
would suggest that studies examining both the dura-
tion and dose-dependence of infectivity across species
are likely to be fruitful and important.

We also must stress the importance of considering the
accuracy of the diagnostic test. If we naively assumed
thatthedirectßuorescentantibody(DFA)testcorrectly
identiÞed all negative ticks (i.e., no false positives), our
estimatesofprevalencewouldhavebeenartiÞciallyhigh
and our estimates of infectivity artiÞcially low (Table 1).
Indeed,whenweallowfor falsepositivesweÞndthatwe
cannot distinguish between low rates of transmission to
ticks (low infectivity) and falsely positive test results for
two species (i.e., raccoons and opossums). False posi-
tives are not unique to DFA, nor is the bias in parameter
estimates unique to this likelihood-based method of es-
timation. Rather, these results demonstrate the limits of
our knowledge when dealing with imperfectly speciÞc
tests. They also highlight an urgent need for data on the
speciÞcityofdiagnostic tests. In theabsenceofsuchdata,
we urge scientists to be conservative when scoring in-
fection status. It is encouraging to note, however, that if
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the true test speciÞcity is known and included in the
likelihood calculations this bias is erased (Fig. 3b and d,
dashed lines).

Last, we would like to emphasize that our reanalyses
of the data of LoGiudice et al. (2003) strongly support
their conclusions: different species have the potential
to play dramatically different roles in B. burgdorferi
transmission and Lyme disease risk. We Þnd in general
that those species most often infected are also the
species with the greatest propensity to infect naṏve
larvae. It will be enlightening to see how widely this
pattern holds in other vector-borne disease systems.
The likelihood-based technique we presented should
help researchers address this question.
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Appendix

RCode forEstimatingPrevalenceandInfectivity.We
begin with the simple case, where there are no false
positives. In this case we can estimate prevalence (�)
and infectivity (�) from data on a single species. The
function EstPrevInf() calculates a vector of prob-
abilities of observing Pos-infected vectors out of
Tested vectors tested on each individual host, given
P � � and I � �.

EstPrevInf � function(P, I, Pos,
Tested) {

LL � log(P * dbinom(Pos, Tested,
prob � I) � (1 � P) *
dbinom(Pos, Tested, prob �
0))

#to prevent the function from
#returning –inf, which causes
#errors in the optimization
#routine, those rows with �inf

#are replaced with a very low value

LL[is.infinite(LL)] � �99999
return(LL)

}
We then Þnd the values of P � � and I � � that

maximize the log likelihood of EstPrevInf(). For
simple problems with few parameters, the optim()
function of R is sufÞcient, but for more complex opti-
mization problems we use a simulated annealing routine
(Goffe et al. 1994) implemented in R (R Development
Core Team 2005) by L. Murphy and C. Canham found
in the Likelihood package at http://www.ecostudies.org/
lme_R_code_tutorials.html. This routine, anneal(),
also has the advantage of calculating support intervals
on the parameter estimates. It sends a vector of pre-
dictions to a probability density function to calculate
the probability of observing each. Because our pre-
dictions are actually probabilities, we usePDF.wrap-
per() to accept and send back these probabilities.
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PDF.wrapper � function(predicted) {
#just to keep anneal() happy
return(predicted)}

Theanneal() function also requires a list of initial
parameter estimates, pars, and lists of high
(par_hi) and low (par_lo) boundaries for these
parameters.

pars � list(P � 0.5, I � 0.5, Pos �
“Pos”, Tested � “Tested”, predicted
� “predicted”)
par_lo � list(P � 0, I � 0)
par_hi � list(P � 1, I � 1)

The actual data (e.g., ExampleData) should be a
data frame where each row refers to an individual
animal and one column has the number of vectors
Tested and another has number that test Pos.

ExampleData � data.frame(cbind(
Tested � c(3, 10, 25, 16, 15, 12, 7,
7, 3, 3, 2),
Pos � c(3, 0, 13, 13, 8, 10, 7, 5,
0, 0, 0)

))
We then call the simulated annealing optimization

routine with the command:
Results � anneal(model � EstPrevInf,
par � pars, source_data �

ExampleData, pdf � PDF.wrapper,
par_lo, par_hi, dep_var �
“Pos”, initial_temp � 1

#lower temperature converges better
)

The parameter values of Results$best_pars
should be P� 0.661 and I � 0.689, and the AICc, found
in Results$aic_corr, should equal 48.48.

In the case where speciÞcity is allowed to vary, we
need to estimate its value across multiple species. The
code is only slightly more complex, representing the �j
and �j parameters for each of the j species. Here, we
present a simple example for just three species.

EstPrevInfSpec � function(I1, P1,
I2, P2, I3, P3, Spec, Pos, Tested,
Spp){
LL � numeric(length(Pos))
#First calculate the likelihoods
#of the subset of individuals
#that are species “One”
LL[which(Spp �� “One”)] � log(
#Positive tests from vectors fed on
#infected animals
P1*dbinom(Pos[which(Spp �� “One”)],
Tested[which(Spp �� “One”)], prob �
(I1 � (1 � I1)*(1 � Spec)))
#Positives tests from vectors fed on
#negative animals
� (1 � P1)*dbinom(Pos[which(Spp ��
“One”)], Tested[which(Spp �� “One”)],
prob � (1 � Spec)))
#Then for those that are species “Two”
LL[which(Spp �� “Two”)] � log(P2*
dbinom(Pos[which(Spp �� “Two”)],

Tested [which(Spp �� “Two”)], prob �
(I2 � (1 � I2)*(1 � Spec))) � (1-P2)
*dbinom(Pos[which(Spp �� “Two”)],
Tested[which(Spp �� “Two”)],
prob � (1 � Spec)))
#Then finally those that are
#species “Three”
LL[which(Spp �� “Three”)] � log(P3*
dbinom(Pos[which(Spp �� “Three”)],
Tested[which(Spp �� “Three”)],
prob � (T3 � (1 � T3)*(1 � Spec))) �
(1 � P3)*dbinom(Pos[which(Spp ��
“Three”)], Tested[which(Spp ��
“Three”)], prob � (1 � Spec)))
#to prevent the function from
#returning-inf, which causes
#errors in the optimization
#routine, those rows with -inf
#are replaced with a very low value
LL[is.na(LL)] � �99999
LL[is.infinite(LL)] � �99999
return(LL)

}
The parameter lists include more parameters, but

are otherwise the same:
pars � list(I1 � 0.5, P1 � 0.5, I2 �
0.5, P2 � 0.5, I3 � 0.5, P3 � 0.5,
Spec � 0.5, Pos � “Pos,” Tested �
“Tested,” Spp � “Spp,” predicted �
“predicted”)
par_lo � list(I1 � 0, P1 � 0, I2 �
0, P2 � 0, I3 � 0, P3 � 0, Spec � 0)
par_hi � list(I1 � 1, P1 � 1, I2 �
1, P2 � 1, I3 � 1, P3 � 1, Spec � 1)

The data are also organized very similarly. There is
just one additional column of data with the species
names (here, species One, Two, and Three):

MultiSppData � data.frame(cbind(
Tested � c(3, 10, 25, 16, 15, 12,
7, 7, 3, 3, 2, 15, 16, 22, 25, 18,
18, 16, 21, 23, 5, 9, 10, 12, 13,
12, 8, 9, 17, 13, 6, 5, 16, 3, 1,
1),
Pos � c(3, 0, 13, 13, 8, 10, 7, 5,
0, 0, 1, 5, 1, 6, 0, 2, 4, 3, 0, 0,
0, 1, 2, 1, 1, 7, 6, 6, 7, 4, 3, 4,
7, 2, 0, 1)))

MultiSppData$Spp � c(rep(“One”, 11),
rep(“Two”, 12), rep(“Three”, 13))

Last, the call to the anneal() function is almost
identical, just specifying the EstPrevInfSpec()
function and the new data, MultiSppData:

MultiSppResults � anneal(model �
EstPrevInfSpec, par � pars, source_
data � MultiSppData, pdf � PDF.
wrapper, par_lo, par_hi, dep_var �
“Pos”, initial_temp � 1)

The resulting solution should have an AICc of 154.58,
with parameters: I1 � 0.674, P1 � 0.737, I2 � 0.191, P2 �
0.554, I3 � 0.505, P3 � 0.827, and Spec � 0.970.
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