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In model terrestrial ecosystems maintained for three plant generations at elevated con-
centrations of atmospheric carbon dioxide, increases in photosynthetically fixed carbon
were allocated below ground, raising concentrations of dissolved organic carbon in soil.
These effects were then transmitted up the decomposer food chain. Soil microbial
biomass was unaffected, but the composition of soil fungal species changed, with
increases in rates of cellulose decomposition. There were also changes in the abundance
and species composition of Collembola, fungal-feeding arthropods. These results have
implications for long-term feedback processes in soil ecosystems that are subject to
rising global atmospheric carbon dioxide concentrations.

Above-ground plant and ecosystem re-
sponses to elevated atmospheric carbon di-
oxide (CO2) are varied (1–7). However, all
these potential responses may be con-
strained by below-ground processes and me-
diated by responses of soil biota to both
direct and indirect effects of CO2 enrich-
ment (8–12). Roots, mycorrhizal fungi, and
other rhizosphere organisms may be sub-
stantially affected by changes in CO2 con-
centration, yet comparatively little atten-
tion has been paid to the effects of increas-
ing atmospheric CO2 on these below-
ground organisms and their functioning
(13). In addition, reliable predictions about
the ecological effects of elevated CO2 at the
community, ecosystem, and biosphere lev-

els are difficult to make; most available
information is based on experiments con-
ducted at lower levels of organization, such
as leaves or individual plants (1, 3, 14).
Only relatively recently have longer term
experiments on populations and communi-
ties been initiated. Current experimental
evidence questions the justification for pre-
dicting community and ecosystem responses
from results obtained with isolated plants
growing under controlled (mostly optimal)
conditions (1, 3, 14, 15). One possible
solution is to use model laboratory systems
of intermediate complexity. Here, we used
the Ecotron controlled environment facility
at Silwood Park (16) to provide evidence,
from direct experimental studies, of changes
in soil biota as a consequence of elevated
atmospheric CO2 concentrations.

The experiment used 16 terrestrial mi-
crocosms, each 1 m2, maintained in the
Ecotron (16, 17). Conditions were the same
for all chambers (18), except that eight
were maintained at ambient external atmo-
spheric CO2 concentrations, which fluctu-
ated naturally between 350 and 400 mmol
mol–1, and eight were dynamically main-
tained at 200 mmol mol–1 above ambient
(19). The community, established in soil
that was relatively poor in nutrients (18),
consisted of primary producers, herbivores,
secondary consumers (parasitoids), and soil
micro- and macroorganisms (Table 1). All
chambers were initiated with the same
community, and several ecosystem process-
es were measured over three plant genera-
tions. The results discussed below, from as
many as four independent experimental
runs (20, 21), primarily concern the soil;
not all parameters were measured in every
run.

The communities growing in elevated
CO2 fixed more carbon for most of the

experimental period (22). Changes in the
above-ground community were relatively
small (23) and broadly in line with other
whole-ecosystem studies (1–4, 6, 7, 24).
More marked effects, previously unreported,
were observed in soil biota. Total numbers
(all species pooled) of Collembola per kilo-
gram of Ecotron soil were significantly
higher at the end of run 1 in elevated CO2
[density (6 SE) 5 252 6 35 (elevated),
166 6 54 (ambient); P , 0.05]. Species
composition also changed (Fig. 1). Proiso-
toma minuta dominated communities in am-
bient CO2, whereas Folsomia candida domi-
nated in elevated CO2. Pseudosinella alba
was also present in significantly higher pro-
portions in elevated CO2 in run 1 but not in
other runs. It is well known that key envi-
ronmental variables influence soil microar-
thropods (25). Of these, temperature, water
content, and pH of soil showed no signifi-
cant differences between treatments in any
run. Nor can change in the collembolan
community be attributed to changes in root
biomass (26) or in root “quality” (as as-
sessed by C:N ratios) (27).

Soil microbial biomass (26) was unaf-
fected by elevated CO2; similar results have
been obtained in most (18, 28, 29) but not
all (9) other studies. Enzymes involved in
carbon and nitrogen cycling in the soil also
showed no major significant treatment ef-
fects (30). All ecosystems were initiated
with standard samples drawn from a filtered
soil-wash microbial pool (31) (Table 1).
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Table 1. Composition of the Ecotron community
(cf., species very similar, but not exactly like type-
specimen).

Plant species Cardamine hirsuta
Poa annua
Senecio vulgaris
Spergula arvensis

Herbivore and
parasitoid
species

Mollusk (Helix aspersa)
Aphids (Brevicoryne brassicae,

Myzus persicae)
Whitefly (Trialeurodes

vaporariorum)
Leaf miner [Phytomyza

(Chromatomyia) syngenesiae]
Parasitoids (Aphidius

matricariae, Dacnusa sibirica,
Encarsia formosa)

Soil biota Earthworm (Lumbricus
terrestris)

Wood louse (Porcellio scaber)
Collembola (Folsomia candida,

Proisotoma minuta,
Protaphorura cf. armata,
Pseudosinella alba,
Sphaeridia cf. pumilis)

Plus soil bacteria, fungi,
protists, and nematodes
seeded into each chamber
by means of a filtered soil
leachate (31)
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were assayed with DNA profiles (32); at the
end of run 1, we found only minor differ-
ences in bacterial taxonomic composition
between chambers, and no consistent dif-
ference between treatments.

Fungi, in contrast, showed differences
between ambient and elevated atmospheric
CO2 treatments. One functional group, cel-
lulose decomposers, had higher biomass in
elevated CO2 (33), probably accounting for
the increased decomposition rates of cotton
strips placed in the soil (P , 0.05) (34).
Moreover, fungal taxonomic composition
differed between treatments: 14 of the 33
species isolated were common to both treat-
ments, whereas 9 species were restricted to
ambient CO2 and 10 to elevated CO2, a
pattern extremely unlikely to occur by
chance (35).

These results imply that enhanced atmo-
spheric CO2 concentrations will have major
impacts on soil food chains. A substantial
proportion of photosynthetically fixed car-
bon is allocated below ground (8, 9, 36);
after release, much of this carbon becomes
available to rhizosphere microorganisms
(10, 37). At the end of run 1, soil concen-
trations of dissolved organic carbon (DOC)
were significantly higher in elevated CO2
(Fig. 2) [analysis of variance (ANOVA),
P , 0.05], and soil-water dissolved organic
nitrogen (DON) concentrations were high-
er, almost reaching statistical significance
(P 5 0.06). These changes are probably
sufficient to drive observed differences in
soil fungi. Collembola are major consumers
of, and selective grazers on, different species

of fungi (38). We suggest that differences in
the collembolan community were driven by
differences in the soil fungal assemblage,
which in turn were driven by differences in
organic substrates derived from higher
plants.

Thus, we hypothesize that at elevated
atmospheric CO2 concentrations over three
plant generations, a relatively long pathway
of alterations occurs: increased plant pho-
tosynthesis 3 below-ground transport of
carbon 3 increased DOC 3 changes in
soil fungal assemblages 3 changes in Col-
lembola species abundance and composi-
tion. Possible long-term feedbacks remain
unknown: Collembola are selective fungal
grazers, and hence it is possible that they
not only respond to but also drive changes
in soil fungal species composition, with un-

known consequences for the long-term de-
composition of soil organic matter (8, 36).

Despite these differences, other soil
biota and processes (root biomass and C:N
ratio, bacterial taxa, enzymatic activity) re-
mained unchanged. Microbial biomass may
have remained unchanged despite increases
in soil DOC because microbial populations
were regulated by grazing from components
of the ecosystem that we did not monitor,
for example, protozoa or nematodes. These
apparent differences in, and lack of cou-
pling between, bacterial and fungal compo-
nents of the soil food web may reflect com-
partmentalization of soil ecosystem process-
es (39).

We urge caution in overgeneralizing
these results. The Ecotron houses model
ecosystems (16, 17). Published studies (11,
28, 40) provide conflicting data on soil
microbial responses to elevated CO2, with
the possibility that responses are specific to
particular plant species, communities, or
ecosystems. Considerably more attention
must be paid to the long-term impacts of
increasing atmospheric CO2 concentrations
on soil ecosystem processes and soil biota.
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Fig. 2. Concentrations of DOC in the topmost 15
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represent elevated CO2.
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Control of Alternative Splicing of Potassium
Channels by Stress Hormones
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Many molecular mechanisms for neural adaptation to stress remain unknown. Expres-
sion of alternative splice variants of Slo, a gene encoding calcium- and voltage-activated
potassium channels, was measured in rat adrenal chromaffin tissue from normal and
hypophysectomized animals. Hypophysectomy triggered an abrupt decrease in the
proportion of Slo transcripts containing a “STREX” exon. The decrease was prevented
by adrenocorticotropic hormone injections. In Xenopus oocytes, STREX variants pro-
duced channels with functional properties associated with enhanced repetitive firing.
Thus, the hormonal stress axis is likely to control the excitable properties of epinephrine-
secreting cells by regulating alternative splicing of Slo messenger RNA.

Stressors including cold exposure, hypogly-
cemia, and physical constraint trigger adap-
tive changes in catecholamine- and pep-
tide-secreting chromaffin cells of the adre-
nal medulla. Rapid stress-induced increases
in transcription of the epinephrine-synthe-

sizing enzyme phenylethanolamine-N-
methyltransferase (PNMT) result from di-
rect interaction of receptor-bound glu-
cocorticoid stress hormones with glucocor-
ticoid response elements in the promoter
(1). Glucocorticoids also regulate transcrip-
tion of voltage-gated K channel genes in
cardiac and pituitary cells (2). In chromaf-
fin cells, large-conductance “BK” calcium-
and voltage-gated K channels are particu-
larly prominent, participating in action po-
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