
In eastern North America, the glow of a sugar maple-
covered hillside in full autumn color is an unforgettable

sight. Sugar maple (Acer saccharum) (Figure 1) is one of
several major tree species of the northern hardwood forest,
along with American beech (Fagus grandifolia), yellow
birch (Betula alleghaniensis), eastern hemlock (Tsuga
canadensis), and several other hardwood and conifer
species (Bormann et al. 1970). Found as far south as
Alabama and as far west as Wisconsin (Little 1971), in the
center of its range (southern Ontario and Quebec, New
England and New York) sugar maple is often the domi-
nant tree species in the forest (Alerich and Drake 1995;
Griffith and Alerich 1996; Frieswyk and Widman 2000a,
2000b). In addition, sugar maple is one of the most valu-
able timber species of the northern hardwood forest and
supports a maple syrup industry that sells about $100 mil-
lion worth of syrup annually from the northeastern states
and Canada (Allen et al. 1995). Tapping sugar maples for
sap to produce syrup has a long history dating back to the
Native Americans (Wittstock 1993), and maple syrup
became an important source of sweetener for European

settlers in the region (Figure 2).
However, the importance of sugar maple extends well

beyond its association with fall colors and pancakes.
Recent studies show that, among the trees of the northern
hardwood forests, sugar maple has unique characteristics
that exert a strong influence on nitrogen (N) cycling and
retention (defined as atmospheric input of N minus
gaseous and hydrologic outputs) in forested watersheds.
The effect on N retention is very important because this
region receives high levels of atmospheric N pollution
from fossil fuel combustion in urban and industrial areas of
the US East Coast and Midwest. If this atmospherically
deposited N is not retained by forest ecosystems, but
instead is leached through the forests to the surface waters,
it can acidify soils, streams, and lakes, and pollute estuaries
and coastal waters (Aber et al. 2003). 

� Sugar maple and nitrogen cycling

Recent research has shown that, compared to the other
dominant species in the northern hardwood forest, sugar
maple is more often associated with soils with high rates
of nitrification and nitrate production. Nitrate is the
most mobile form of inorganic N in soils and is more
readily lost from ecosystems by leaching into ground and
surface waters. For example, in a comparison of single-
species plots of five major tree species in the Catskill
Mountains of southeastern New York state, soils under
sugar maple had the highest rates of net nitrification in
laboratory incubations and the highest levels of
extractable soil nitrate compared to soils associated with
the other tree species (Figure 3, Lovett et al. in press).
Similar high rates of net nitrification were found under
individual trees of sugar maple in western Connecticut
(Finzi et al. 1998a), and in sugar maple-dominated stands
in eastern Wisconsin (Pastor et al. 1984), Michigan (Zak
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In a nutshell:
• Sugar maple plays a critical role in regulating nitrogen leach-

ing from forested watersheds in eastern North America
• Soils under sugar maple stands tend to promote the formation

of the highly mobile nitrate ion
• Changes in sugar maple populations are likely in some areas

in the next few decades due to anthropogenic stresses
• Increases in sugar maple abundance should lead to lower N

retention in forested watersheds, while decreases in sugar
maple should result in higher N retention
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et al. 1989), and across the northeast (Lovett and Rueth
1999, Ross et al. in press). Sugar maple stands may also
have high rates of gross nitrification (the rate of
production of nitrate by nitrifying bacteria),
(Verchot et al. 2001), but it is the net nitrifica-
tion rate (gross nitrification minus consumption
of nitrate by microorganisms and abiotic
processes in the soil) that ultimately dictates the
availability of nitrate for plant uptake and nitrate
loss via leaching. Higher nitrate leaching results
in lower N retention by the ecosystem. 

The characteristics of sugar maple that produce
high net nitrification rates in soil are not com-
pletely understood. Compared to other deciduous
species, sugar maple does not have unusually high
nitrogen concentrations in its foliage or wood
(Lovett et al. in press; Templer et al. in press).
However, its foliar litter does have low lignin con-
centrations and a low lignin:N ratio, leading to
high rates of decomposition (Melillo et al. 1982;
Pastor and Post 1986; Lovett et al. in press).
Consequently, the soil organic matter that devel-
ops under sugar maple stands tends to have a low
carbon:nitrogen (C:N) ratio (often in the range

14–18) (Lovett et al. in press) which can lead to
high rates of net nitrification (Lovett and Rueth
1999; Goodale and Aber 2001; Aber et al. 2003).
In mixed-species plots in the Catskill Mountains
of New York, the White Mountains of New
Hampshire, and the Appalachian Mountains of
West Virginia, abundance of sugar maple was sig-
nificantly correlated with lower soil C:N ratios or
higher rates of net nitrification or both (Christ et
al. 2002; Lovett et al. 2002; Ollinger et al. 2002;
Venterea et al. 2003).

Other unusual aspects of sugar maple physiology
may also be involved in its effect on soil N
cycling. First, while sugar maple occurs on soils
with a wide range of pH and base cation levels, it
often does poorly in soils that are low in calcium
and magnesium, high in aluminum, and have low
pH (Burns and Honkala 1990, Van Breemen et al.
1997). The addition of lime increases the survival,
vigor, diameter growth, and seed production of
sugar maples in base-poor sites (Long et al. 1997).
Sugar maple may be able to maintain high cal-
cium in its tissues and in surface soils by using
deep roots to access calcium from lower soil hori-
zons (Dijkstra and Smits 2002). It is possible that
the high nitrification rates under sugar maple
stands are a response to the higher pH of the soil
rather than any aspect of the litter quality (Paul
and Clark 1996). However, Lovett et al. (in press)
found that among the five major species in the
Catskill Mountains, the highest pH values (in
mineral horizons) were found under sugar maple
and red oak stands, the species with the highest

and lowest net nitrification rates, respectively. This sug-
gests that although the abundance of sugar maple may be

82

www.frontiersinecology.org © The Ecological Society of America

Figure 1. Sugar maple in autumn color in the Adirondack Mountains, NY.
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Figure 2. Maple syrup production in New England in the 19th century.
Buckets were used to haul the maple sap to a saphouse where it was boiled
down to produce maple syrup.
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enhanced in soils of high base status, the higher
soil calcium and pH values do not necessarily
produce the high nitrification rates. Second,
sugar maple trees are “hydraulic lifters” that
transport water from deep soil and release it into
surface soils at night, following a gradient of
water potential (Dawson 1993). This process
tends to keep surface soils moist during dry peri-
ods, which may enhance soil microbial N
cycling, including nitrification. Third, sugar
maple has arbuscular mycorrhizae, in contrast to
beech, oak, hemlock, and birch, which have
ectomycorrhizae (Blum et al. 2002). Ecto- and
arbuscular mycorrhizae differ in N cycling prop-
erties (Langley and Hungate 2003). However,
the relationships between these physiological
characteristics and the unusual properties of soils
that develop under sugar maple have not been
thoroughly explored.

Because sugar maple does not readily take up
nitrate (Rothstein et al. 1996; Templer 2001;
Templer and Dawson in press), high rates of net
nitrification and nitrate production can lead to
high rates of nitrate leaching from soils. Nitrate
leaching contributes to the depletion of nutrient
cations from forest soils, acidification of streams and lakes,
and eutrophication of estuaries and coastal waters
(Murdoch and Stoddard 1992; Driscoll et al. 2003; Aber et
al. 2003). In the mixed-species forested watersheds of the
Catskill Mountains, stands with a higher abundance of
sugar maple have lower C:N ratios in organic horizons of
the soil which are associated with elevated concentrations
of nitrate in drainage waters (Lovett et al. 2002). In sites
across the Adirondack Mountains of northern New York
State, there is a positive relationship between the abun-
dance of sugar maple in the study plots and the concentra-
tions of nitrate in soil solution below the rooting zone
(Figure 4). The presence of nitrate below the rooting zone
is generally considered an indicator of N loss from forest
ecosystems. In a comparison between forested sites in the
Turkey Lakes watershed of eastern Ontario, Canada, and
Huntington Forest of the Adirondack Mountains in New
York State, Mitchell et al. (1992) found higher rates of
nitrate leaching in Turkey Lakes despite lower rates of
atmospheric N deposition; the authors attributed this pat-
tern to a higher abundance of sugar maple and an absence
of American beech. Furthermore, soil freezing events may
stimulate more nitrate loss from soils under sugar maple
than other tree species (Boutin and Robitaille 1995,
Fitzhugh et al. 2001).

One could question whether the soil properties under
sugar maple stands are a cause or an effect of the presence
of sugar maple on the site. In other words, do sugar maple
trees create the soil properties conducive to their growth
or do they tend to grow on soils with these properties? The
best way to distinguish the cause and effect of plant–soil
relationships is through a common garden experiment, in

which trees of different types are planted on the same soil
and allowed to mature. While there are notable examples
of such experiments in the literature (Son and Gower
1991; France et al. 1989), none have involved sugar
maple. However, several aspects of the comparative stud-
ies cited above suggest that sugar maples cause, rather
than respond to, low C:N ratios and high net nitrification
rates. First, the soil C and N characteristics are often seen
most strongly in the organic horizons rather than the min-
eral horizons, suggesting that it is the organic matter pro-
duced by the tree that causes the characteristic, rather
than some property of the underlying substrate. Also,
these C and N characteristics are observed under mature
trees, and the soils under those trees have had decades to
respond to the organic matter produced by the maples. If
the trees did not create, or at least perpetuate, the C and
N effects, the effects should disappear after decades of
organic matter turnover. Finally, similar effects are
observed in many locations across a broad range of
bedrock and superficial geologies, again suggesting that
underlying substrate is not the cause. The situation is dif-
ferent for calcium, however, because there is good evi-
dence that sugar maple both responds to, and modifies,
the calcium status of a site (Van Breemen et al. 1997; Finzi
et al. 1998b; Bailey et al. in press).

Sugar maple may not be unique in its effects on soil N
cycling. Mitchell et al. (2003) considered sugar maple to
be part of a suite of species, including basswood (Tilia
americana), eastern hophornbeam (Ostrya virginiana) and
white ash (Fraxinus americana) that prefer base-rich soils
and are associated with high nitrate production in soils.
High net nitrification rates have been measured in soils
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Figure 3. Mean concentrations of KCl–extractable nitrate in organic
horizon soils (Oe and Oa horizons, striped bars), rates of net nitrification
(white bars), and nitrification fraction (ratio of net nitrification to net N
mineralization, black bars) for single-species plots of five dominant species in
the Catskill Mountains of New York. Bar heights represent means of six
plots per species; error bars are the standard error of the mean. Letters
indicate statistical comparison of means of these response variables using
analysis of variance. For each response variable, species sharing a letter are
not significantly different (P > 0.05). Redrawn from data in Lovett et al.
(in press).
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under white ash in Connecticut (Finzi et al. 1998a), and
Zak et al. (1989) found sugar maple–basswood–white ash
forests to have much higher net nitrification rates than
the other stand types they surveyed in Michigan. Within
this suite of species, however, sugar maple is by far the
most dominant and therefore has the greatest influence on
ecosystem nutrient cycling over large regions. 

� Changes in sugar maple abundance

In New York State and northern New England, sugar
maple appears to be holding its own in competition with
other tree species. Records from the USDA Forest
Service Forest Inventory and Analysis (FIA) program
show that sugar maple is the most dominant hardwood
tree (in terms of tree volume) in Vermont and New York,
and the second most dominant, behind red maple (Acer
rubrum) in Maine and New Hampshire (Alerich and
Drake 1995; Griffith and Alerich 1996; Frieswyk and
Widman 2000a, 2000b). In each of these states, sugar
maple volume as a fraction of total hardwood volume did
not change appreciably between FIA measurements in
the early 1980s and the mid-1990s. In a study of the mor-
tality and crown conditions in 223 sugar maple-domi-
nated stands in the northeastern and north-central US
and eastern Canada from 1988–1997, Allen et al. (1999)
reported that sugar maple mortality was typical of trees
found in northern hardwoods stands. Areas of high sugar
maple mortality have often been associated with recent
drought or insect attack (Kolb and McCormick 1993;
Allen et al. 1999).

Despite the apparent stability of sugar maple popula-
tions over the past several decades, the future of sugar

maple is uncertain because of a number
of simultaneous and potentially interact-
ing changes occurring in northern hard-
wood forests. One major factor that
could affect sugar maple is the increased
mortality of one of its principal competi-
tors, American beech (Fagus grandifolia),
due to beech bark disease. This disease
complex is caused by a scale insect
(Cryptococcus fagisuga) and fungi of the
genus Nectria. It was introduced to
North America at Halifax, Nova Scotia
around 1890, and has since spread
through the Maritime Provinces of
Canada and the northeastern US, south-
west to Ohio, and as far south as Virginia
(Houston et al. 1979; Houston 1994).  A
decline in beech and a  resulting increase
in sugar maple may well be occurring in
the Catskill Mountains of southeastern
New York, where beech bark disease is
ubiquitous (Griffin et al. 2003), and
forests that were dominated by beech in
pre-settlement times are now dominated

by sugar maple (McIntosh 1972). Manion and Griffin
(2001) reported that beech in the Adirondack Mountains
of northern New York suffered unusually high mortality
because of beech bark disease, and that the beech decline
resulted in an increased abundance of sugar maple and red
maple. In some other areas, beech appears to be able to
maintain its dominance despite the disease, although the
age and size structure of the populations are affected. At
Huntington Forest in the Adirondacks, Forrester et al.
(2003) found that beech bark disease is having a dramatic
influence on the demography of beech, with older, larger
trees declining and young beech saplings increasing in
density. Another prominent species of the northern hard-
wood association, eastern hemlock, is also currently under
attack from an introduced insect, the hemlock woolly
adelgid (Adelges tsugae) (Orwig and Foster 1998). Thus,
one might expect that, in some areas of the northern hard-
wood forest, populations of sugar maple could increase in
the near future due to the devastating effects of these
introduced pests on its competitors. On the other hand,
sugar maple is itself threatened by a number of anthro-
pogenic stresses with potentially very serious conse-
quences. We discuss three stresses below in what we
believe to be the order of increasing threat. 

First, there may be adverse effects of acid deposition on
sugar maple, especially in sites with low soil base cation
content. Acid deposition is associated with increased sul-
fate and nitrate leaching from soils, and flux of these
anions engenders an equivalent loss of cations. Depending
on the cation exchange properties of a soil, these fluxes of
mobile anions can accelerate the leaching of both basic
(eg Ca2+, Mg2+, K+, Na+) and acidic (Aln+, H+) cations.
The loss of base cations, especially Ca2+ and Mg2+, is of
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Figure 4. Concentration of nitrate in B-horizon soil solution in mixed-species stands
in the Adirondack Mountains of New York State, plotted against the percentage of
sugar maple in the stand (Mitchell et al. 2003). These soil solution samples are from
a depth largely below the rooting depth of the trees, so the nitrate present in the water
at this depth is considered an index of the amount of nitrate lost from the plot by
leaching. These data indicate that increased nitrate leaching is observed in stands
having more than about 50% sugar maple.
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special importance to sugar maple because it performs
poorly on base-poor sites. The depletion of base cations
from soils may reduce both the vigor of adult trees (Horsley
et al. 2000) and the growth and survival of saplings (Kobe
1996; Kobe et al. 2002). Although sulfate concentrations
in soils and drainage waters have decreased in the past few
decades due to lower sulfur emissions mandated by the US
Clean Air Act , the emissions and deposition of N have
not declined (Driscoll et al. 2001). Sugar maple stands may
be particularly sensitive to N deposition because of their
propensity to produce the highly mobile nitrate ion, and
the high sensitivity of this nitrification process to increased
N accumulation in the soil (Lovett and Rueth 1999; Aber
et al. 2003). Reported declines in sugar maple on
unglaciated sites in northwestern and north-central
Pennsylvania have been tentatively attributed to an inter-
action of base cation nutrition with stresses such as insect
defoliation (Horsley et al. 2002). Declining sugar maple
stands on the Allegheny plateau are associated with soils of
low base cation availability (Bailey et al. in press). These
stands showed marked improvement after liming (Long et
al. 1997), which also suggests that low base cation status or
low soil pH were involved in the decline of these trees.
Although Allen et al. (1999) did not find a statistically sig-
nificant relationship between acid deposition and sugar
maple mortality at the regional scale, the unusually high
mortality of sugar maple in Pennsylvania, an area of high
acid deposition, warrants concern and further investiga-
tion (Driscoll et al. 2001).

Another factor potentially affecting sugar maple is cli-
mate change resulting from greenhouse gas emissions,
which may alter the tree’s range by reducing its competi-
tive ability in the southern part of its range (Iverson and
Prasad 1998). Predictions of vegetation patterns  for cli-
mate scenarios in which atmospheric CO2 concentrations
are doubled indicate that suitable habitat for sugar maple
will decline in the US, especially under the warmer, dryer
conditions predicted by the Canadian Climate Center
(CCC) model (Figure 5). The modeling approach illus-
trated in Figure 5 predicts species distributions after they
have come into equilibrium in a stable climate, and
ignores transitional periods in which species may persist
outside their normal climatic range. Nonetheless, this
exercise illustrates the potentially important effects of cli-
mate change on spatial distributions of tree species. It is
also worth noting that Iverson and Prasad’s (2001) predic-
tions indicate that over most of its current range, the
decline of sugar maple-dominated forest will be accompa-
nied by an increase in oak–hickory forest, which would
have a radically different effect on nitrogen cycling and
retention (Lovett et al. 2002; Lovett et al. in press). 

The Asian long-horned beetle (Anoplophora glabri-
pennis), an introduced insect pest that feeds on maples, is
another potential source of stress on sugar maple popula-
tions (USDA 1999). This insect was introduced to North
America within the past decade, apparently in raw wood
packing material from Asia (Milius 1999), and to date

there have been outbreaks in the vicinity of New York
City, New Jersey, Chicago and Toronto. While this beetle
can feed on several different hardwood trees, it appears to
prefer maples, including sugar maple. It bores large holes
in the trunks of trees, and the cumulative effect of these
holes may eventually kill the tree.  This insect could pose
a serious threat to sugar maple if it spreads throughout the
tree’s range. Introduced pests and pathogens have the
potential to nearly eliminate host trees, because the hosts
often have little evolved resistance and the pest usually
has no natural enemies. Good examples of this phenome-
non in the 20th century include the chestnut blight,
which has nearly wiped out the formerly dominant
American chestnut (Castanea dentata) from its range, and
Dutch elm disease, which has similarly devastated popula-
tions of American elm (Ulmus americana) (Campbell and
Schlarbaum 2002). The Asian long-horned beetle has the
potential to produce a swift and drastic decline in North
American populations of sugar maple. 

We predict that a substantial change in the abundance of
sugar maple, for whatever reason, would produce a signifi-
cant shift in N cycling in the forests of eastern North
America. If sugar maple populations increase as a result of
decreased competition from beech and hemlock, we expect
that N leaching to surface waters will increase and N reten-
tion in forested watersheds will decrease in the affected
areas. On the other hand, if sugar maple abundance declines
because of any of the stresses discussed above (or for other
reasons), a decline in nitrate leaching will follow, since
replacement species will probably lower rates of nitrification
in forest soils. This change in species composition could lead
to less N leaching into drainage waters and greater N reten-
tion in soils. We believe the effect on N leaching could be
large, given that species composition appears to be at least
partially responsible for the roughly 20-fold variation in
nitrate leaching among sites in the Catskill and Adirondack
forests (Figure 4; Lovett et al. 2002; Mitchell et al. 2003).
Changes in nitrate leaching could have important effects on
surface water acidification and coastal zone eutrophication
(Driscoll et al. 2003). Other possible consequences of
changes in sugar maple populations include effects on
wildlife habitat, forest aesthetics, and the timber and maple
sugaring industries. Given the multiple environmental
changes that may occur simultaneously in the next few
decades, and the uncertainty in forecasting these changes, it
is hard to predict the future of the sugar maple populations
in North America. However, it is clear that perturbations of
forest community composition, especially to a prominent
and unique species such as sugar maple, could have wide-
spread consequences for forest ecosystem function.
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model, but using a doubled-CO2 climate scenario as predicted by the Canadian Climate Center global circulation model (c) and the
Hadley global circulation model (d). “Little’s boundary” refers to the range maps published by Little (1971). Note that (a) represents
actual occurrence of sugar maple, while (b), (c), and (d) represent predicted suitable habitat based on current (b) and future (c and
d) climates. Unpublished data provided by A Prasad and L Iverson, USDA Forest Service. An older version of these simulations can
be found in a paper by those authors on the Website www.fs.fed.us/ne/delaware/atlas/index.html.
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