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Competitive exclusion � n species cannot coexist on fewer than n limiting resources in a constant and isolated
environment � has been a central ecological principle for the past century. Since empirical studies cannot universally
demonstrate exclusion, this principle has mainly relied on mathematical proofs. Here we investigate the predictions of a
new approach to derive functional responses in consumer/resource systems. Models usually describe the temporal
dynamics of consumer/resource systems at a macroscopic level � i.e. at the population level. Each model may be pictured
as one time-dependent macroscopic trajectory. Each macroscopic trajectory is, however, the product of many individual
fates and from combinatorial considerations can be realized in many different ways at the microscopic � or individual �
level. Recently it has been shown that, in systems with large enough numbers of consumer individuals and resource items,
one macroscopic trajectory can be realized in many more ways than any other at the individual � or microscopic � level.
Therefore, if the temporal dynamics of an ecosystem are assumed to be the outcome of only statistical mechanics � that is,
chance � a single trajectory is near-certain and can be described by deterministic equations. We argue that these equations
can serve as a null to model consumer-resource dynamics, and show that any number of species can coexist on a single
resource in a constant, isolated environment. Competition may result in relative rarity, which may entail exclusion in
finite samples of discrete individuals, but exclusion is not systematic. Beyond the coexistence/exclusion outcome, our
model also predicts that the relative abundance of any two species depends simply on the ratio of their competitive
abilities as computed from � and only from � their intrinsic kinetic and stoichiometric parameters.

Competitive exclusion � n species cannot coexist on fewer
than n limiting resources in a constant and isolated
environment � has been a central ecological principle for
the past century. This principle has been substantiated by
some influential empirical (Gause 1934, Park 1962, Lack
1971) and theoretical studies (Volterra 1931, Levin 1970,
Armstrong and McGehee 1980). However, experimental
results cannot prove and hardly falsify the principle (Hardin
1960). Thus theoretical studies were presumably the main
reason � perhaps in timely conjunction with the above
substantiating experiments � why exclusion became the a
priori expectation for any competitive interaction. This had
two profound consequences for subsequent ecological
research. First, competitive outcomes were often categorized
as ‘exclusion’ even though exclusion was not actually
observed (Tilman 1981, Smith and Kalff 1983, Sommer
1983, 1985, 1986). Second, much subsequent theoretical
and empirical effort was devoted to finding mechanisms
explaining coexistence of competing species (Connell 1978,
Levins 1979, Sommer 1985, Huisman and Weissing 1999,
Chesson 2000, Kelly and Bowler 2002). Indeed, when
viewed as deviations from this a priori expectation,
observations of diversity in natural communities (Hutch-
inson 1961, Connell 1978), coexistence of cryptic species

(McPeek and Gomulkiewicz 2005, Leibold and McPeek
2006) and coexistence in some simple microscosms are in
want of an explanation. Had the competitive exclusion
principle not existed, many of these observations and
experiments would likely have been interpreted differently,
or done differently.

If one accepts that the principle of competitive exclusion
has shaped ecologists’ a priori expectations, it is worth
briefly revisiting its theoretical roots. The foundations all
relied on formalisms of consumer/resource interactions
where consumer per capita growth rate depends only on
the abundances of limiting resources (or factors), but
neither on its own abundance, nor the abundance of other
consumers (Levin 1970, Armstrong and McGehee 1980).
However, more complex interactions, such as intra- or inter-
specific density-dependence � what Connell et al. (1984)
called community compensatory trends � are frequently
observed (Abrams and Ginzburg 2000, Wright 2002). Intra-
specific density-dependence can be described mathemati-
cally. Although the most plausible formalism is currently
under debate (Abrams and Ginzburg 2000), Lobry et al.
(2006) recently showed that whatever the functional form of
this density dependence, if it is negative, then competitors
coexist. So depending on critical differences with regard to
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density-dependence, models can preclude or permit coex-
istence of competing species. Does this challenge the validity
of the principle of competitive exclusion? It depends on
which formalism � density-dependent or not � is viewed as
the most appropriate ‘null’ model for consumer/resource
interactions. This paper seeks to contribute to this theore-
tical issue.

Most traditional approaches to modelling consumer/
resource dynamics are phenomenological. Although a
number of thermodynamic principles � or goal functions
� have been proposed as alternatives for explaining and
predicting the temporal dynamics of ecosystems (maximum
entropy production, Dewar 2003, 2005, Martyushev and
Seleznev 2006, maximum power principle Odum 1988,
Fath et al. 2001) they remain controversial and not
generally accepted. Another candidate first principle which
has been overlooked is Jaynes’ (1985) statistical mechanical
principle (although attempts have been made to relate it to
maximum entropy production, Dewar 2003, 2005). Jaynes
proposed that the dynamics of non-equilibrium systems
could be an outcome of ‘statistical mechanics’; literally,
what is observed at a given, macroscopic, scale is what can
be realized in the greatest number of ways at a finer,
microscopic, scale. Recently, Neill and Gignoux (2008)
developed this idea to show that statistical mechanics may
suffice to generate deterministic dynamics for ecosystems
with large numbers of ‘particles’ � that is, items of living
and non-living entities. Given its parsimony and simplicity
as an underlying principle, such a model arguably has a part
to play in our search for null models of ecosystem dynamics
and consumer/resource interactions in particular. Here we
investigate the predictions of a statistical mechanics model
with regard to species coexistence. We first explain the
statistical mechanical principle underpinning the model and
the way the equations are derived. Then we apply the model
to two classical case studies, namely N species consuming a
single resource, and two species consuming two resources.
We end by discussing the differences and similarities of
the model and its predictions with previous modelling
approaches.

Methods

Model description

We show by an example how it is possible to apply Jaynes’
statistical mechanical principle to predict the dynamics of
consumer/resource systems.

Consider a simple ecosystem comprising two consumer
species sharing one resource. Assume that the resource has r
identical items, and that each consumer species has c1 and
c2 individuals respectively. Further assume that each
consumer species needs one resource item to grow and
reproduce. For simplicity’s sake, we consider only a lumped
growth/reproduction process for the moment; mortality
processes will be introduced later. A macroscopic time
course of this ‘ecosystem’ � its trajectory � can be described
by two variables: the number x1 of individuals of species 1
reproducing per unit time dt and its counterpart x2 for
species 2. Any macroscopic trajectory as given by (x1, x2)
can be realized in many ways at the individual, microscopic

level. Figure 1 shows two different microscopic realizations
of the same macroscopic time course (x1�2, x2�3) with
r�8, c1�10 and c2�12. Specifically, if we consider a
short enough time step, there is little chance that the same
individual will reproduce twice during dt. In this frame-
work, the number of microscopic ways the macroscopic
trajectory (x1, x2) can be realized is equal to:

W(x1; x2)�
r!

x1!x2!(r � x1 � x2)!

c1!

x1!(c1 � x1)!

� c2!

x2!(c2 � x2)!

The first term of the product on the right hand side
corresponds to the number of ways the r resource items can
be dispatched between the x1 reproducing individuals of
species 1, the x2 reproducing individuals of species 2 and
the r�x1�x2 resource items that will not be consumed
during dt. The second term represents the number of ways
to dispatch the c1 individuals of species 1 between those
that will grow and those that will not during dt; likewise the
third term is the number of ways to dispatch the c2

individuals of species 2. W(x1, x2) is called the microscopic
multiplicity of the trajectory (x1, x2). From its expression,
we can see that not all macroscopic trajectories have the
same multiplicity (since W varies as a function of x1 and
x2). Jaynes’s statistical mechanical principle simply says that
the observed macroscopic trajectory of this system is the one
with maximum multiplicity, while being compatible with
other known macroscopic constraints (we return to those
constraints below).

While it seems reasonable to assume that, in the absence
of any other forces governing the dynamics of this system,
the macro-trajectory with maximum multiplicity has the
largest probability of being observed, what about the other
macro-trajectories? For large enough systems, they have
negligible multiplicities (Neill and Gignoux 2008). Speci-
fically, if p is the order of magnitude of abundances in the
system then ‘large enough systems’ means log(p)BBp. Thus

Figure 1. Microscopic multiplicity of macroscopic outcomes in a
one resource/two consumer case: examples of two of very many
ways (black and dashed arrows respectively) to realize at the
individual level the population-level outcome where species 1
consumes 2 resource items and species 2 consumes 3 resource
items during a given time interval. Squares are consumer
individuals or resource items.
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if the dynamics of a system are only driven by statistical
mechanics, we can predict that it will follow a single,
deterministic trajectory, the one with maximum micro-
scopic multiplicity.

We are therefore interested in determining the macro-
trajectory with maximum microscopic multiplicity that is
compatible with other known macroscopic constraints. Not
all macroscopic time courses are feasible during any given
time step. In our example, we must have x15c1, x25c2

and x1�x25r. These are matter conservation constraints.
Another known constraint is energy conservation. Suppose
we know the heat budget of our system dH during dt (this
assumption will be relaxed thereafter); then, as all biological
processes either consume or produce energy, we can write
an energy conservation constraint of the form h1x1�h2x2�
dH where h1 and h2 would be the specific heats of growth/
reproduction processes for species 1 and 2 respectively.
Matter and energy conservation are the sole constraints we
will consider here, in order to devise a minimalist model.

Let us now maximise the multiplicity subject to the
above constraints. Here, W(x1, x2) is only defined when x1,
(c1�x1), x2, (c2�x2) and (r�x1�x2) are positive, so the
matter conservation constraints are automatically satisfied.
We can then introduce a Lagrange multiplier l for the
energy constraint and maximise the function:

S(x1; x2)� log(W)�l(h1x1�h2x2)

To do so we use the Stirling approximation n!�n log(n)�
n�o(n): Omitting the constant terms, we get:

S(x1; x2):�2x1log(x1)�(c1�x1) log(c1�x1)

�2x2log(x2)�(c2�x2) log(c2�x2)

�(r�x1�x2) log(r�x1�x2)

�l(h1x1�h2x2)

Deriving with respect to x1 and setting the derivative
1S

1x1

�0; we get:

�2log(x1)� log(c1�x1)� log(r�x1�x2)�lh1�0

Introducing k1�exp(�lh1/2), this yields:

x1�k1(c1�x1)
1=2(r�x1�x2)

1=2 (1)

Similarly we have:

x2�k2(c2�x2)
1=2(r�x1�x2)

1=2 (2)

with k2�exp(�lh2/=2). The completion of the calculus
would normally require determining l as a function of the
heat budget dH. However, in classical statistical physics,
temperature is defined as being inversely proportional to l,
which is the Lagrange multiplier associated with the energy
conservation constraint. Assuming this definition holds here
as well, we do not need to know the heat budget if we know
the temperature, and, furthermore, if we work at constant
temperature, then k1 and k2 can be viewed as constant
kinetic parameters.

Our model is thus a system of two coupled non-linear
equations whose unknowns are x1 and x2.This allows us to
calculate the dynamics of the system, when constrained by
mass and energy conservation and otherwise driven by
statistical mechanics. In this example x1 depends on r, c1

and c2. To get a sense of what the functional response x1/c1

of this model looks like in two-dimensional space, assume
c2�0. Then dividing each side of Eq. 1 by c1 we have:

x1

c1

�k1

�
1�

x1

c1

�1=2�
r

c1

�
x1

c1

�1=2

This is a ratio-dependent functional response sensu Arditi
and Ginzburg (1989). It is shown on Fig. 2 along with the

Figure 2. Model functional response x/c�f(r/c) in the one resource/one consumer case (solid line) compared with the ratio-dependent

functional form originally proposed by Arditi and Ginzburg (1989) x=c�m
r=c

K � r=c
: Parameter values are: k�0.1 for our model; m�1

and K�50 for Arditi and Ginzburg’s model. Note: both functions saturate at 1.
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phenomenological functional form originally proposed by
Arditi and Ginzburg (1989).

We made three core assumptions to derive this model: 1)
the time step must be short enough so that any ‘particle’
will undergo at most one event during dt 2) The order of
magnitude p of the system should be such that p��log(p).
3) Fluxes x1, x2, r�x1�x2, etc . . ., should be large enough
for the Stirling approximation to hold. Although finding
the right time step might require some fine tuning in
practice, these requirements are not incompatible. Assump-
tion 3) should follow from assumption 2). Furthermore, if
we examine Eq. 1 and 2 they show some properties that
might allow for a relaxation of some of the above
assumptions. First, the system of Eq. (1�2) is scale-
invariant: that is, if we multiply all the abundances by a
factor p, the solutions will be multiplied by p as well.
Therefore, from a mathematical point of view we can
replace abundances by densities without changing the
results. Second, provided the time step is short enough,
simulations suggest that the model is insensitive to the
choice of the exact duration of the time step, provided that
the kinetic parameters are adjusted proportionally to it.
While this remains to be formally demonstrated, it makes
intuitive sense when we recall how the equations were
derived: the macro-trajectory predicted by the model
between times, say, t0 and t1 is compatible with the vast
majority of micro-trajectories feasible during this time step.
It therefore seems likely that its truncation over a smaller
time interval is compatible with the majority of micro-
trajectories over this smaller interval and therefore corre-
sponds to the model prediction over this smaller time
interval. The analytical derivation of the dependency of the
kinetic parameters upon the time step is, however, not
straightforward. Finally, it seems reasonable to say that the
most stringent assumption for the model to hold is that the
order of magnitude of the system be large (i.e. p��log(p)).

The rationale we have followed for this simple example can
be generalized for more complex ecosystems. We can consider
an arbitrary number of resources (rj); an arbitrary number of
consumer species (ci); and can add as many processes as is
necessary. The most general formalism for ecosystems is given
in the Supplementary material Appendix 1 and derived in
Neill and Gignoux (2008). In the following we add a
mortality process for each consumer species in addition to
growth/reproduction (but we do not include waste recycling).
Mortality could result from predation, old age and starvation.
We will not consider an explicit consumption process
equivalent to ‘basal metabolism’ at the individual level,
although it would not qualitatively change the results
presented here. To keep things simple and comparable with
classical models, we will consider that at birth, individuals
have built-in reserves for a prescribed mean life span, and that
basal metabolism is the amount of resource consumed by a
steady-state population as the result of concurrent reproduc-
tion events and individual deaths from starvation. Under
these conditions, we choose a time step short enough that an
individual either reproduces or dies � i.e. if it has died, it
means in retrospect that the probability it has reproduced
within the same time interval is negligible.

In the following, we applied this formalism to two case
studies, namely N species consuming a single resource, and
two species consuming two resources. We derive analytical

results for species coexistence on one or two resources
(equilibrium existence and stability analysis) but also
present numerical simulations as illustrations. Calculations
and methods for the numerical simulations are presented in
the Supplementary material Appendix 1.

Results

Species coexistence on a single resource

Consider a situation where a resource is continuously
supplied with input rate I to a community of N consumer
species with abundances ci, and let xi and zi denote the
number of individuals of species i, respectively reproducing
and dying per unit time step dt. Variations in consumer and
resource abundances per unit time step follow the difference
equations:

dci�xi�zi (3)

dr�I�
X

i
nixi (4)

Equation 4 states that the amount of resource taken up by a
consumer species i is proportional to its growth rate xi, the
coefficient of proportionality being equal by definition to
ni, the number of resource items required to build a new
individual of that species � we will call it the stoichiometric
coefficient of that consumer species for this resource (see
Table 1 for a summary of parameters). As explained in the
methods section, the xi’s and zi’s can be calculated from a
set of 2N coupled equations:

xi�ki(ci�xi�zi)
1

(1�ni)

�
r �

P
k nkxk

ni

� ni

(1�ni)

(5)

and zi�mi(ci�xi�zi) (6)

for 15i5N

We show (Supplementary material Appendix 1) that
there exists a unique non-trivial equilibrium where all
species coexist. We further show that this equilibrium is
always feasible and stable (Supplementary material Appen-
dix 1). Consumer abundances at equilibrium are propor-
tional to the resource level, so that consumer relative
abundances do not depend on the resource level (or
ultimately on the resource input rate I). In fact, consumer
relative abundances as given by Eq. 7 below are character-

Table 1. Summary of model parameters and variables.

ci Number of individuals of consumer species i
rj Number of items of resource j (index omitted if only one

resource)
nij Stoichiometric coefficient: number of items of resource j

needed to build a new individual of species i
ki Growth kinetic constant of species i (adimensional)
mi Mortality kinetic constant of species i (adimensional)
xi Growth rate of species i: number of individuals reproducing

per unit time step
zi Mortality rate of species i: number of individuals dying per

unit time step
D Dilution rate
hj Heat requirement of a process per unit event
I Resource input rate per unit time step
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istic of a steady-state for consumers that can be achieved at
any resource level and maintained in spite of resource
abundance variations if the changes in resources are slow
enough. The relative abundance of species i with respect to
species j is determined by their stoichiometric requirements,
and their kinetic constants for growth and mortality:

ci

cj

�
(1 � 2mi)

(1 � 2mj)

nj

ni

�
ki

mi

�(1�ni)=ni
�

mj

kj

�(1�nj)=nj

(7)

Equation 7 shows that a consumer will be more
abundant relative to its competitors if it has a lower
mortality kinetic constant, a higher growth kinetic constant,
and a lower stoichiometric requirement for its resource
(Fig. 3). In the situation where two species have similar
stoichiometric requirements and kinetic constants, they will
tend to even proportions. Adding a constant dilution rate D
in the model does not affect the existence of an equilibrium
where all consumer species coexist. However it does shift
their competitive balance, and simple calculations show that

D

(1 � D)
�mi has to be substituted for mi in Eq. 7. Thus

high dilution rates reduce the abundance of species with low
mortality rates mi to a greater degree than that of other
species.

Two species coexistence on two resources in a
chemostat

The model can also be expanded to address more complex
cases such as a chemostat with two resources and two
consumer species. Consider two competitors feeding on two
essential resources. In a chemostat with dilution rate D, the

dynamics of the system will be:

drj�D(rj0�rj)�n1jx1�n2jx2

dci�xi�zi�Dci

with

xi�ki(ci�xi�zi)
1

ni

�
r1 � n11x1 � n21x2

ni1

�ni1

ni

�
�

r2 � n12x1 � n22x2

ni2

�ni2

ni

zi�mi(ci�xi�zi)

where here rj0 is the concentration of the jth resource in the
reservoir, nij is the stoichiometric coefficient of species i for
resource j, and ni�1�ni1�ni2.

Although these equations are not readily tractable
analytically, it is possible to show that for all resource ratios,
there exists a unique, non-trivial equilibrium where the two
consumers coexist and it is always feasible (Supplementary
material Appendix 1). Numerical simulations suggest it can
often be stable (Fig. 4). The consumer relative abundances at
equilibrium will, in general, vary with the resource ratio
(Fig. 4). However, species having similar stoichiometric
requirements � irrespective of their kinetic constants � will
exhibit buffered variations in their relative abundances (Fig.
4, Supplementary material Appendix 1). Again, species
having both similar stoichiometric and kinetic constants will
tend to even proportions.

Figure 3. Model illustration for a one resource/two consumer case. Featured densities are log scaled. Species 2 can grow faster than species
1 but also has a higher mortality kinetic constant and a lower resource use efficiency. As a result, we see a classical succession pattern where
species 2 (c2, closed squares) dominates first, but is eventually dominated by species 1 (c1, open squares). Although dynamics until day 40
might suggest slow exclusion, the two species actually tend to a coexistence equilibrium (Supplementary material Appendix 1). Resource
density: r, closed diamonds. Parameter values used: growth kinetic constants (log scaled) k1��2.2, k2��1.7, mortality kinetic
constants (log scaled) m1��3.1, m2��2.5, stoichiometric coefficients n1�1, n2�2, resource input rate I�0.01.
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Discussion

The modelling approach

The modelling approach we have used here is very different
from classical approaches. It rests on a statistical mechanical
principle, that Jaynes (1985) qualified as ‘so simple that one
almost hesitates to utter it’. This principle says: what you
observe at a macroscopic level is what can happen in the
greatest number of ways at a microscopic level. Although
probabilistic in essence, statistical mechanics does yield
deterministic equations for large enough systems, and these
can be readily compared with other existing models,
particularly as regard to coexistence predictions. We return
to that issue below.

The implementation of the principle entails finding the
feasible macroscopic trajectory of a system that has
maximum microscopic multiplicity. This might sound
very much like a principle of entropy maximisation if we
define entropy as the log multiplicity, as some may be
inclined to do. But this definition of entropy would not fit
with other applications of entropy maximisation. There is

actually no consensus over what entropy is and what the
principle of entropy maximisation applies to (Haegeman
and Loreau 2008). Therefore, we point out that the
approach described here does not rely on any entropy
function, and that the multiplicity of a trajectory is
straightforward to understand and calculate given the
correct framework.

Others might construe the model presented here as a
neutral model. We do not think so. There are many
differences between this model and neutral models in the
sense of Hubbell (2001). First and foremost, in our model,
species, let alone individuals, are not equivalent; parameters
(stoichiometric and kinetic) are species-specific. Second,
there is no ecological drift in the equations presented here
since they are deterministic. Finally, in our model there is
no immigration, emigration or speciation. In sum, in our
model, coexistence is neither explained by species equiva-
lence, ecological drift nor speciation/immigration processes,
all of which are essential to coexistence in neutral models.

Nevertheless, in the same way that neutral models are
seen as generating null predictions with regard to diversity-
abundance relationships on large spatio-temporal scales, we
think our statistical mechanical model could be viewed as
generating null expectations for consumer/resource dy-
namics. Real consumer/resource dynamics can obviously
be more complex than what this model predicts. However,
there is no doubt that mass and energy conservation, and
statistical mechanics are at work in Nature: given that they
are sufficient to generate determinism out of chance, it is
hard to imagine that they are unnecessary for understanding
consumer/resource dynamics. We thus argue that in some
ways this model is a minimalist basis for making a
prediction and, as such, is a null model.

Statistical mechanics do not always generate determin-
ism, though: it requires systems with a large enough
number of ‘particles’. We saw that for small systems, several
macro-trajectories could be equally probable, such that the
determinism collapses and the system might display a
stochastic behaviour. One may also question the validity of
the model for systems with sparse densities. Although one
could imagine a system so big that in spite of sparse
densities, it would contain large numbers of ‘particles’, as a
rule sparse densities are synonymous with small abundances
� especially in experimental systems. Therefore the same
restrictions should apply to sparse systems and small
systems. What do we mean by ‘large’, ‘sparse’ or ‘small’?
We saw that from a statistical mechanical view point, less
probable macro-trajectories could be neglected when the
order of magnitude of the system satisfied p��log(p). This
might not be easy to assess for real systems. A good proxy
condition for the model to apply could be reproducibility
(Jaynes 1985). Indeed, if a system is large enough and its
dynamics are driven by statistical mechanics, then it should
behave in a deterministic, and thus reproducible way.
Conversely, any system whose behaviour is not reproducible
to a reasonable degree � intrinsically stochastic systems �
cannot be modelled with the statistical approach presented
here.

Bearing in mind these restrictions, we can now discuss
the predictions of the model with respect to coexistence.

Figure 4. Two examples for the time course of the consumer
abundance ratio (log scaled) in a chemostat with two essential
resources and two consumers at different resource input ratios. In
both examples (a and b), dilution rate D�0.005, resource input
densities r1�(10,10,10,2,04.), r2�(0.4,2,10,10,10), consumer
initial densities c1�c2�0.1, growth kinetic constants (log scaled)
k1��2.3, k2��2, mortality kinetic constants (log scaled)
m1��1.3, m2��1, and stoichiometric coefficients n11�
n22�1. (a) n12�n21�2 (dissimilar species), and (b) n12�
n21�1.3 (similar species).
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Species coexistence

In our model, any number of species can stably coexist on a
single resource in a constant and isolated environment (i.e.
no immigration). This obviously contrasts sharply with the
principle of competitive exclusion.

Mathematically, this finding follows from density-
dependencies in our model. We show in Supplementary
material Appendix 1, as a corollary from the stability

analysis, that consumer per capita growth rates
xi

ci

are

decreasing functions of their own abundances ci as well as
the abundances of other consumers cj, while per capita

mortality rates
zi

ci

are inversely related to per capita growth

rates. As a result, and as noted earlier by Connell et al.
(1984), over-abundant species are constrained and rarer
species favoured (Wright 2002). Our results parallel that of
Lobry et al. (2006). They showed within a more classical
framework, in continuous time, that negative density-
dependent functional responses allowed for stable coex-
istence in consumer/resource systems.

However, in contrast with phenomenological models,
these mathematical properties are emergent properties in
our model. Therefore they are only a proximate explanation
for coexistence. Ultimately, the only ‘mechanisms’ at work
in our model are statistical mechanics, i.e. chance, mass and
energy conservation. Density-dependencies could result
mainly from mass conservation. Indeed, mass conservation
implies that a given resource unit cannot be consumed twice
within the same time interval, whether by individuals of the
same or of a different species. Therefore, it seems natural
that, at fixed resource abundance r, the proportion of

individuals from species i that will reproduce during dt,
xi

ci

decreases with ci or cj. Similarly, the inverse relation
between per capita growth and mortality rates stems from
the fact that if an individual has died during a given time
interval, then we assumed it did not have time to reproduce
during the same time interval.

It seems logical as well that, as a result of chance, these
density-dependencies take the form of a ratio-dependence

sensu Arditi and Ginzburg (1989). Indeed,
r

ci

reflects the

mean number of resource items available per individual of

species i, and
cj

ci

the mean number of competitors of species j

per individual of species i. While simple ratio-dependent
models have been subject to substantive criticism (Abrams
1994, 1997), those criticisms are not relevant to our model.
Reviewing them in depth is beyond the scope of this paper,
but in summary: first ratio-dependence is not programmed
into the model, it emerges from its theoretical foundations;
second, the model is mathematically well defined for any
consumer and resource values; last, it is not appropriate to
use the model at infinitely sparse densities, as we pointed
out earlier.

Despite appearances, our model does not preclude
competitive exclusion to occur in some circumstances.

Indeed, as the model has limits, so do its predictions.
Thus for small systems with stochastic dynamics, we should
not expect systematic coexistence. Such intrinsic stochasti-
city might explain some of Park’s (1962) experiments with
beetles where, among replicates, one of the two species
involved � but not always the same species � would
dominate and exclude the other. Even when the system is
large enough to display deterministic behaviour, the model
does not preclude competition from systematically leading
to local extinction in some circumstances. A simple example
illustrates this point. Suppose the competitive ratio of two

species i and j is such that we expect
ci

cj

�103; as given by

Eq. 7. The total abundance of the two competitors is set by
the resource input rate I. If I is low enough, this might be
less than 103. Consequently, cjB1, which, in a real world
with discrete individuals means that species j will go extinct.
Again, we stress that if one species has low abundance,
stochastic extinction can also occur, all the more so in a
variable environment. Consequently our findings do not
invalidate the existence of other mechanisms that can
promote coexistence if competition drives one species to
very low abundances (Connell 1978, Levins 1979, Sommer
1985, Huisman and Weissing 1999, Chesson 2000, Kelly
and Bowler 2002). In particular, poor competitors may
certainly benefit from niche partitioning.

Our model therefore does not rule out competitive
exclusion but it certainly does not preclude coexistence.
Rather, the model enables us to go beyond the coexistence/
exclusion dichotomy to predict the relative abundance of
two species as a function of their intrinsic characteristics.

Consumer relative abundances

According to Eq. 7, the model suggests a continuum from
exclusion to competitive equivalence (even abundances).
Before going into the details of what determines the
competitive ability of a species with respect to another,
we note one important feature of Eq. 7: the relative
abundance of any two species depends only on their own
characteristics, irrespective of which other competitors
might be present in the community. That is, the relative
abundance of species i and j does not depend on the
abundance or the parameters of any other species. Such a
prediction is testable with, for example, community change
following biodiversity loss or species introductions.

If we look more closely at Eq. 7 we can see that a
competitor will be more abundant if it has a high growth
kinetic constant, and/or a low mortality kinetic constant,
and/or a low stoichiometric requirement for the resource
(i.e. high resource use efficiency). These predictions are not
that different from the R* rule of Tilman (1982), if one
substitutes ‘dominance’ for ‘exclusion’. The predictions are
also consistent with various ecological strategies based on
tradeoffs between growth ability, low mortality and resource
use efficiency (r and K strategies for instance, Pianka 1970).
Another aspect worth pointing out is the importance of low
mortality in competitivity. For some reason, one often reads
in the literature that competitive ability equals high growth
rates (but see Strom 2008 as a counter-example). Our
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model shows that the better competitors might not be the
ones that can grow faster (i.e. with a higher growth kinetic
constant), but the ones that die less (have a smaller
mortality kinetic constant) because they will eventually
accrue more biomass. Such an outcome has been observed
in various communities (Kelly and Bowler 2002, Strom
2008) and generally fits with plant successional patterns.
This issue is also relevant to chemostat experiments. We
showed that in chemostats, dilution artificially raises
mortality kinetic parameters in a way that is more
detrimental to species with low mortality constants. This
could explain why so few species coexist in chemostat
experiments, if one accepts the premise that there is no
principle of competitive exclusion. Indeed, these experi-
ments were often carried out at very high dilution rates
(Tilman 1981, Sommer 1983, 1985, 1986). High dilution
rates (�0.4 d�1 for algae) contribute to the elimination of
many species whose competitive strategy is not to grow fast,
but to die less. In contrast, continuous culture experiments
with lower dilution rates (for algae,B0.1 d�1) allowed for
up to 4�5 coexisting algal species out of 10 on one limiting
nutrient (Smith and Kalff 1983, Neill unpubl.).

Equation 7 further shows that ecological similarity does
not lead to relative rarity. On the contrary, in our model,
ecologically similar species are expected to tend towards
similar abundances. This result holds for a chemostat with
two resources and two consumer species as well, where, in
addition, species having similar stoichiometric requirements
� irrespective of their kinetic constants � will exhibit
buffered variations in their relative abundances along a
resource ratio gradient. This finding might seem at odds
with the theory of limiting similarity or resource ratio
theory. In resource ratio theory for example, exclusion is not
only systematic at either ends of a resource ratio gradient
but the region of coexistence becomes increasingly smaller,
and the shift in consumer relative abundances along a
resource ratio gradient is all the more dramatic, when
species have similar stoichiometric requirements. Yet we
also know that in classical models, the more similar species
are, the slower the rate of exclusion. Slower exclusion can
even generate clusters of coexisting look-a-likes species
along some niche axis (Sheffer and van Nes 2006).
Therefore over short time periods, the behaviour of our
model might not differ that much from classical models
with regard to the similarity limit. Over longer time periods
however, envisaging the coexistence of similar species as
stable rather than unstable may have ramifications for
sympatric speciation and adaptive dynamics (but see also
Geritz et al. 1998). It might help explain the existence of
cryptic species, for example (McPeek and Gomulkiewicz
2005, Leibold and McPeek 2006).

Conclusion

In summation, we have used a model for consumer/resource
interactions where community dynamics are the outcome of
statistical mechanics. We have argued that this model could
play the role of null model. While our model does not
preclude competitive exclusion, it predicts that any number
of species could coexist on a single limiting resource in a
constant homogeneous and isolated environment. The

model predicts that the relative abundance of two species
is a continuous function of their intrinsic parameters with
respect to growth, mortality and resource use efficiency.
These results seemingly stand in sharp contrast to previous
theoretical work. However, if we are willing to question the
competitive exclusion principle, these predictions are con-
sistent with observations and not necessarily that different
from earlier theory. Although it would be tempting to
suggest a competitive coexistence principle instead, it is
perhaps more reasonable to suggest that neither principle is
valid and that consumer relative abundances simply depend
on their relative competitive abilities.
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Appendix 1

Model description

It is possible to extend the rationale presented in the main text to any ecosystem. Specifically, 

consider an ecosystem consisting of N living or non-living components (consumers or resources, or 

both). Each component contains a number si of discrete items (individuals or resource items, 

corresponding to the abundances ci or rj in the main text) that may be involved in a number of 

processes (mainly trophic processes). We assume that each process is constrained at the individual 

scale by specific stoichiometric and heat requirements. Written as a mass-balance equation, it reads 

∑i
i jSih j p r od uc t s , where νij is the stoichiometric coefficient of an item Si viewed as a 

reactant in the jth process and hj is the heat requirement (or more rarely heat production) of one 

process event. Note that νij can be zero (a given component may not be involved in a given process) 

and hj can be negative. It is meaningful to define the magnitude of a process per unit time step δt as 

x j=
 si

i j
 for any i such that νij > 0, where δsi is the amount of component i undergoing the jth 

process during δt. Then the dynamics of this ecosystem can be fully specified by the set of process 

magnitudes (xj)j ≤ J. Assume for now that the heat budget during δt is known. For any given 

component, and provided the time step is small enough, conservation of matter implies in addition 

that ∑iνijxj ≤ si (thus we assume newly formed items during δt do not react during δt). Under these 

constraints, only a certain range of macroscopic behaviours (xj)j ≤ J are possible. But, as illustrated in 

the main text, any possible macro-behaviour (xj)j ≤ J can be realized in many ways at the individual 

level. Specifically its multiplicity is :

W x1 ,xJ =
∏i si !

 si−∑j
i jx j !∏j

i j x j!
 

The key result is that for a large enough number of items of each component, there is one macro-

behaviour which has an overwhelmingly larger multiplicity than any other one, and is thus near-



certain. This near-certain macro-behaviour is found by maximizing W as a function of (xj)j ≤ J under 

constraints of material conservation and heat budget. This yields a system of non-linear equations 

(Neill and Gignoux 2008): 

 (1)

where νj = ∑iνij, and kj is a kinetic adimensional parameter depending only on temperature and on hj. 

Thus kj is constant at constant temperature and the system heat budget need not be known. 

Note that although a macro-behaviour entailing the disappearance of a given species i during 

δt (through ∑iνijxj = si) is among the feasible dynamics of our ecosystem, it is never the most 

probable one. Depending on its parameters, a given species abundance may nevertheless tend 

towards zero just as in an exponential decay; the value zero is never actually reached but this is an 

artefact of working with continuous variables. In the real world, a species consisting of discrete 

entities whose abundance tends towards zero will eventually disappear. Therefore, when applied to 

consumer/resource systems, the model does not preclude competitive exclusion a priori. 

Equation 1 is the general equation that we have transposed to particular configurations of 

consumer/resource systems, with slightly different, less general notations. For instance, in the main 

text and below, the corresponding stoichiometric coefficients of a consumer species are always 1 

and those of resources in growth processes are noted νij where the subscript i now refers to the 

subscript of the consumer species and the subscript j refers to that of the resource, as indicated in 

Table 1 in the main text. 

Coexistence of an arbitrary number of consumers on a single resource

Consider a system with N consumer species and one resource. The dynamics of this system are 

given by: 

 δr = I – ∑iνixi (2)

 δci = xi – zi (3)

where I is the resource input rate, xi the ith consumer species growth rate, zi its mortality rate and νi 

its stoichiometric requirement for the resource. According to our model, we have: 

x i=k i  c i−x i−z i 
1

1i  r−∑k
k xk

i


i

1i  (4)

x j=k j∏
i
 s i−∑

l
i l x l

i j

i j

j



 zi = mi(ci – xi – zi) (5)

(see Table 1, main text for parameter definitions). There is a unique non-trivial equilibrium in this 

system. First, let us examine the conditions of steady-state for consumer; we set xi = z for all i . 

Using Eq. 5 we have ci−x i−zi =
x i

m i
 and substituting into Eq. 4 yields, for all i: 

x i=k i x i

mi 
1

1i r−∑k
k xk

i


i

1i  

Rearranging gives: 

i xi= k i
1i 

m i


1 ⁄ i

 r−∑k
k xk  

Summing over i gives ∑i
i x i=a r  with coefficient of proportionality a: 

a=
∑i  k i

1ν i

m i 
1 ⁄ νi

1∑i  k i
1 ν i

mi 
1 ⁄ ν i

 

Thus the total consumption flux is proportional to r (and so are the individual consumption fluxes). 

The steady state abundances for consumers follow from rearranging Eq. 5 into c i=
12 mi

mi
x i  

with xi being proportional to r. Furthermore the steady state relative abundance of any two 

consumers ci and cj is: 
c i

c j
=
12m im j x i

12m j m i x j
=
12mi
12 m j  m j

k j 
1ν j
ν j  k i

mi 
1ν i
ν i
ν j

νi
 (6)

None of the above results require the resource to be at equilibrium. In fact the consumers can 

achieve a steady state characterized by the relative abundance equation above for any resource 

level, and they may stay at quasi-steady state even though the resource abundance varies, and thus 

their own absolute abundances vary. Consumers will tend to a steady state all the more rapidly 

when mi is large compared to ki. At steady state the resource depletion follows first order kinetics 

with respect either to resource or consumer abundances. The resource dynamics can thus be 

rewritten as δr = I – ar. Therefore the resource has an equilibrium value r= I
a
0  , which shows 

that there exists a non-trivial equilibrium for the whole system, and that it is always feasible. 

Equilibrium stability

Let hi = xi/ci and gi = zi/ci 



From z i=mi c i−x i−z i   we have g i=
mi

1mi
1−h i   and thus 

∂ h i−g i 
∂ y

=
12 mi

1mi

∂ h i

∂ y
 

where y stands for any state variable of the system. Therefore the Jacobian matrix is 

where we have used hi = gi at equilibrium. 

The terms of that matrix can be calculated. We have

hi=k i 1−h i

1mi 
1

1ν i  r−∑k νk ck hk

νi


ν i

1 νi 
c i

−ν i

1ν i  

To get the partial derivatives, we use the fact that for y = νun with v constant, we have
∂ y

∂ x
=
∂

∂ x
v un =n

∂ u

∂ x
v un−1 =n

∂ u

∂ x

y

u
 

Hence 
∂ h i

∂ c j
= 1

1νi

−∂ h i

∂ c j


h i

1−h i


νi

1ν i
−ν j h j−∑k

νk ck

∂ hk

∂c j


h i

r
−

νi

1 νi
δi j

h i

ci
 

where r=r−∑k
ν k ck hk  and δij = 1 if and only if i = j and 0 otherwise. Rearranging gives : 

∂ h i

∂ c j
=

νi

1νi

 1 1
1 νi

hi

1−h i 
−ν j h j

h i

r
−δi j

h i

ci
−

h i

r ∑k
νk ck

∂ hk

∂c j   (7)

Summing over i gives 

∑i νi c i
∂ h i

∂c j
=∑i

νi
2c i

1 νi

 1 1
1ν i

h i

1−h i 
−ν j h j

h i

r −δi j
h i

c i
−

h i

r ∑k νk ck
∂ hk

∂c j   (8)

Let K i=

νi
2 c i

1ν i

 1 1
1νi

hi

1−h i 
h i

r  and K=∑i
K i . After rearrangement, we get

∑i
νi c i

∂ h i

∂c j
=
−ν j h j KK j

r
c j

1K
 

Substituting into Eq. 7, 

∂ h i

∂ c j
=

νi

1νi

 1 1
1 νi

hi

1−h i 
−ν j h j

h i

r
−δi j

h i

ci


h i

r

ν j h j KK j
r
c j

1K   

[ −∑i
νi
∂ h i

∂ r
c i .. . −∑

i
νi
∂h i

∂c j
ci− νj h j . . .

. . . .. . . .. . . .
12m i

1m i

∂ hi

∂ r
ci .. .

12mi

1mi

∂ h i

∂c j
c i . . .]



...=

νi

1νi

 1 1
1νi

h i

1−h i 
−νj h j

h i

r
1

1K
−δi j

h i

ci


h i

c j

K j

1K   

Now, expanding Kj and rearranging allows us to simplify the right hand side of this equation 

because 

−ν jh j
h i

r
1

1K


h i

c j

K j

1K = h i

1K −ν j
h j

r


h j

r
ν j

2

1ν j

1

 1 1
1ν j

h j

1−h j    

...=1
r
ν j h j h i

1K  −1
1ν j1−h jh j   

So 

∂ h i

∂ c j
=

νi

1νi

 1 1
1 νi

hi

1−h i 
−1

r
ν j h j h i

1K
1

1ν j1−h jh j
−δi j

h i

c i   

...=
K i

νi ci
 −ν j h j

1K
1

1ν j1−h jh j
−δi j

r
c i
  

and 

−∑i
νi

∂ h i

∂c j
c i−ν j h j=

ν jh j KK j
r
c j

1K
−ν j h j

 

...=−ν j h j
1

1K  1
1ν j1−h j h j   

Next 
∂ h i

∂ r
= 1

1νi
−∂ h i

∂ r  h i

1−h i


νi

1νi
 1−∑k

νk ck

∂ hk

∂ r  hi

r
 

...=
νi

1νi

1

1 1
1νi

hi

1−h i

h i

r  1−∑k
ν k ck

∂ hk

∂ r   

Summing over i gives 

∑i
νi c i

∂ h i

∂ r
=K 1−∑k

νk ck

∂h k

∂ r = K
1K

 

So that 
∂ h i

∂ r
=

νi

1νi

1

1 1
1 νi

h i

1−h i

h i

r  1
1K = K i

νi ci

1
1K  

So now we have all the terms of the Jacobian matrix. 



Let λ be an eigenvalue of this matrix with associate eigenvector (V0,...,Vj,...). We have the following 

system of equations: 
−V0 K
1K

−∑ j
V j

ν j h j

1K  1
1ν j 1−h jh j=λ V0  (9)

12 mi

1mi

K i

νi

V0

1K
−∑j

V j

12mi

1mi

Ki

νi
 ν jh j

1K
1

1ν j1−h jh j
δi j

r
c i
=λ V i  (10)

Rearranging Eq. 10 yields 

V 0

1K
−∑j

V j
ν j h j

1K
1

1 ν j1−h jh j
=
 λ12 mi

1mi

K i

νi

r
ci


12m i

1mi

Ki

νi

Vi  (11)

Let 
a i=

12 m i

1mi

Ki

νi

r
c i
=

12 mi

1mi

νi

1νi

h i

1 1
1νi

h i

1−h i

. Subtracting Eq. 9 from Eq. 11 gives : 

V 0=
 λa i

a i
c i

r

Vi−λ V0  

V i=1λ V0

a i ci

r λa i
 

Note that λ≠−a i  because otherwise V0 = 0 thus Vj = 0 for all j≠i  and thus Vi = 0 from Eq. 9 

which is impossible. Substituting into Eq. 9 and eliminating V0 yields 
−K
1K

−
1λ 
1K ∑ j

ν j h ja j c j

r  λa j  1
1ν j 1−h jh j =λ  

−K
1K

−
1λ 
1K ∑ j

K j a j

ν j1−h jλa j 
=λ  

Hence λ= −u
1u  with u=K∑j

K ja j

ν j1−h j  λa j
(12)

In the complex plane it is easy to show that ∣ u
1u

∣1  if and only if R e u −1
2  

Now assume ∣λ∣≥1  

R eK∑j

K ja j

ν j1−h j λa j =K∑j

K j

ν j1−h j 
a jR e λ a j

∣λ∣2a j
22R e λ a j

 

We want to show that R eK∑j

K ja j

ν j1−h j λa j −1
2

 

To do this we will first show that, for all j, 1
ν j1−h j

a jR e λ a j 

∣λ∣2a j
22 R e λ a j

−1  

a jR e λ a j1−h jν j∣λ∣
2a j

22 R e λ a ja jR e λ a j2 ν j∣λ∣
2a j

22R e λ a j   

.. .2 ν j∣λ∣
212 ν ja j

2 4 νj1 R e λ a j  

.. .2 ν j∣λ∣
212 ν ja j

2− 4 νj1 ∣λ∣a j  



Note that at equilibrium 1−h j=
1m j

12 m j
1

2
 

The polynom 2 ν j∣λ∣
212 ν ja j

2−4 ν j1 ∣λ∣a j , where ∣λ∣  is the unknown, has 

discriminant ×

Δ=4 ν j1 2a j
2−4×2 ν j× 12 ν ja j

2  

.. .=16 ν j
218 ν j−8ν j−1 6 ν j

2a j
2  

.. .=a j
2  

Therefore the two roots of this polynom are 
4 ν j1 a j−a j

4 ν j
=a j  and 

4 ν j1 a ja j

4 ν j
=
12 ν j

2 ν j
a j  and we can rewrite the polynom as

 ∣λ∣−a j ∣λ∣−
12 ν j

2 ν j
a j  

Now both of the roots are inferior to 1. Indeed, 

a j
12ν j

2 ν j
a j=

12 m j

1m j

12 ν j

21ν j
h j

1 1
1ν j

h j

1−h j

 

.. .=
12 ν j

2 1ν j

m j

1m j

1 1
1ν j

m j

1m j

 

because at equilibrium h j=
m j

12m j
 and 1−h j=

1m j

12 m j
. And it is easy to verify that 

12 ν j
m j

1m j
21ν j2

m j

1m j
, 

so a j
12ν j

2 ν j
a j1  

Therefore, if ∣λ∣≥1 , we have necessarily 2 ν j∣λ∣
212 ν ja j

2−4 ν j1 ∣λ∣a j0  and thus 

R eK
∑j K ja j

ν j1−h jλa j K−∑j
K j0  

but then from Eq. 12, ∣λ∣1  which contradicts our hypothesis. Therefore we must have 

∣λ∣1  and the equilibrium is stable. Note this holds true whatever the value of r at equilibrium 

or indeed whether the resource is at equilibrium or not. 

Chemostat equilibrium of two competitors on two essential resources

Consider two competitors feeding on two essential resources. In a chemostat with dilution rate D, 

the dynamics of the system will be (see main text): 



δr
j
=D r

j 0
−r

j
−ν

1 j
x
1
−ν

2 j
x
2  (13)

δc
i
=x

i
−z

i
−Dc

i  (14)

with 

x i=k i  c i−x i−z i 
1
ν i r1−ν11 x11−ν21 x2

νi 1 
ν i1

ν i  r 2−ν12 x1− ν22 x2

ν i 2 
ν i2

νi  (15)

z
i
=m

i
c

i
−x

i
−z

i
  (16)

where here ν
i
=1ν

i 1
ν

i2 . Note that from the model construction (see below) the system given 

by Eq. 15 and 16 is guaranteed to have a unique solution satisfying 0≤x iz i≤ci  and 

0≤ν
1 j
x
1
ν

2 j
x
2
≤r

j  and this is the solution we seek whenever we apply the model. 

Furthermore if ci , r j0  for all i, j, then the solutions x i , z i  must be strictly positive. Indeed, 

if x 1=0  for instance, then one of the right-hand side terms in the corresponding Eq. 15 would 

be zero. If ci−x i−z i=0  then from Eq. 16 z i=0 , so ci−x i−z i=ci=0  which contradicts 

our starting hypothesis. If r 1−ν1 1 x 1−ν21 x 2=0  then we must have x 2=0  as well and 

r 1=0  which is impossible again. Idem for the last term. 

Setting Eq. 13 and 14 to zero at equilibrium, using Eq. 16 and substituting into Eq. 15 gives, 

for i = 1,2: 

x i=k i 1−Dx i

Dmi1−D  
1
ν i r 10−

1D
D

 ν11 x1 ν21 x2 

νi 1

νi 1

ν i  r20−
1D 

D
 ν12 x1ν22 x2 

νi 2

νi 2

νi

 

Rearranging, we have 

x i=K i r10−
1D 

D
 ν11 x1ν21 x2

ν i1

ν i1ν i 2 r20−
1D 

D
 ν12 x1ν22 x2

ν i2

νi 1ν i2  

where all constant terms have been pooled into a single constant Ki. This system is formally 

analogous to Eq. 15 and thus is guaranteed to have strictly positive solutions for r1 0 , r 2 00  . 

From Eq. 14 and 16 the equilibrium consumer ratio is proportional to the ratio 
x1

x2
 , 

which from Eq. 17 is: 
x1

x2
=

K1

K 2
 r 1 0−

1D
D

 ν1 1 x1 ν21 x2 
ν11

ν11ν12

−
ν2 1

ν2 1ν22 r2 0−
1D 

D
 ν1 2 x1ν2 2 x2

ν1 2

ν1 1ν1 2
−

ν22

ν21 ν22  

Therefore, the more similar the stoichiometric coefficients, the smaller the weighing of resource 

abundances in determining the ratio 
x1

x
2

. In the limit ν11 = ν21 and ν12 = ν22, we have 
x1

x2
=

K1

K 2
 

constant. 



Numerical methods 

Full model derivation is described in Neill and Gignoux (2008). There are two equivalent 

mathematical formalisms derived in this paper. The first is given by Eq. 1. It is the most meaningful 

and readily tractable analytically. The second is less intuitive; process magnitudes can be calculated 

as explicit functions of Lagrange multipliers µi according to :

 
x j=k jexp∑i

νi j log 
si

νi j
−µ i

ν j
  

In this formulation, possible processes include identical transformations of the kind SiSi  with 

corresponding magnitude x ji
=s iexp −µ i . The unknown N Lagrange multipliers are calculated 

by solving for a system of N equations of matter conservation constraints ∑j
νi j x j=si  where the 

sum is over all possible processes including identical transformations. In essence, all items of 

component i must either undergo a 'true' process or do nothing per unit time interval. This latter 

formulation is more efficient to implement and was therefore used for model simulations. Following 

the method of Agmon et al. (1979), it can be readily shown that the vectorial function 

f= f i1≤i≤N  with f iµ1 ,. .. , µN=s i−∑j
νi j x j , whose zeros we seek to find, has a positive 

definite Jacobian matrix. Therefore it derives from a convex potential 

F µ1 , .. . ,µN =∑i
µ isi∑j

ν j x j  whose minimum can be found by a non-linear minimization 

algorithm. This minimum is the precise Lagrangian multipliers we sought. The procedure is 

repeated at each time step. All simulations were run with a one hour time step. All source code was 

written using R statistical software. 

R script for the model

#model=list(sv,kr,numoins,nuplus,mu)

#note : the time step is not explicitly defined here, but the kinetic parameters and the number of calls to 
model.update will depend on it.

model.update<-function() #updates the state variables of the model when called at each time step.

{
n=length(model$kr) # kr = kinetic constants vector
p=length(model$sv) # sv = state variables of the model
sv<-t(model$sv) # sv should be a line vector
numoins<-(model$numoins) # n*p matrix with stoichiometric coefficients of the jth state variable 



(ecosystem component) as a reactant in the ith process
numoins<-rbind(numoins,diag(rep(1,length(sv)))) # add the identical transformations coefficients
u<-rep(1,ncol(numoins))
nur<-numoins%*%u 
nuplus<-(model$nuplus) #n*p matrix with stoichiometric coefficients of the jth state variable (ecosystem 
component) as a product in the ith process
zr=getzr(sv,numoins,nur,model$kr)
res<-nlm(functionF,model$mu,sv=sv,numoins=numoins,zr=zr,nur=nur)model$mu<<-res$estimate # vector 
of Lagrangian multipliers associated to each state variable

ksi<-getksi(model$mu,zr,sv,numoins,nur)
ksi<-as.vector(ksi)
ksi<-ksi[1:n]
numoins<-model$numoins
sil<-sv-t(ksi)%*%numoins
sil[sil<0]=0 # security, to prevent round off errors yielding negative values for state variables
sv<-sil+t(ksi)%*%nuplus
model$sv[1:p]<<-sv
}

functionF<-function(mu,sv,numoins,zr,nur)
{
ksi<-getksi(mu,zr,sv,numoins,nur)
Z<-t(nur)%*%ksi
value<-sv%*%mu+Z 
grad<-as.vector(sv-t(ksi)%*%numoins)
hess<-t(diag(as.vector(ksi/nur))%*%numoins)%*%numoins
attr(value,"gradient")<-grad
attr(value,"hessian")<-hess
value
}

getksi<-function(mu,zr,sv,numoins,nur)
{
alphar<- -numoins%*%mu 
ksi<-zr*exp(alphar/nur)
I<-(nur<=0)
ksi[I]<-0
ksi
}

getzr<-function(sv,numoins,nur,kr)
{
u<-rep(1,ncol(numoins))
v<-rep(1,nrow(numoins))
alphar<-numoins*log(v%*%sv/numoins)
I<-(numoins<=0)
alphar[I]<-0
alphar<-alphar%*%u 
kr<-c(kr,rep(1,length(sv)))
zr<-kr*exp(alphar/nur)
I<-(nur<=0)
zr[I]<-0
zr
}
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