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Spatial epidemiology is the study of spatial variation in

disease risk or incidence. Several ecological processes

can result in strong spatial patterns of such risk or

incidence: for example, pathogen dispersal might be

highly localized, vectors or reservoirs for pathogens

might be spatially restricted, or susceptible hosts might

be clumped. Here, we briefly describe approaches to

spatial epidemiology that are spatially implicit, such as

metapopulation models of disease transmission, and

then focus on research in spatial epidemiology that is

spatially explicit, such as the creation of risk maps for

particular geographical areas. Although the spatial

dynamics of infectious diseases are the subject of

intensive study, the impacts of landscape structure on

epidemiological processes have so far been neglected.

The few studies that demonstrate how landscape

composition (types of elements) and configuration

(spatial positions of those elements) influence disease

risk or incidence suggest that a true integration of

landscape ecology with epidemiology will be fruitful.
Spatial epidemiology

Pathogens use many different modes to disperse from an
infected to an uninfected host. Some modes involve direct
contact (e.g. pathogens transmitted during aggressive or
sexual encounters), some involve near-direct contact
(e.g. pathogens excreted by one host and inhaled or
consumed by another), whereas others rely on an
arthropod vector. In most cases, the probability of
transmission declines dramatically with distance from
an infected host. As a consequence, factors affecting the
spatial positions of pathogens, hosts and vectors, and their
probability of close encounter, are fundamentally import-
ant to disease dynamics. Spatial epidemiology has arisen
as the principal scientific discipline devoted to under-
standing the causes and consequences of spatial hetero-
geneity in infectious diseases, particularly in zoonoses (i.e.
diseases that are transmitted to humans from non-human
vertebrate reservoirs).

Much credit for the early development of spatial
epidemiology should go to the Russian parasitologist,
Pavlovsky, whose work [1] from the 1930s describing what
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he called ‘landscape epidemiology’ was ‘discovered’ by
Western epidemiologists several decades later. Pavlovs-
ky’s historical concept of landscape epidemiology consists
of three basic observations. First, diseases tend to be
limited geographically; second, this spatial variation
arises from underlying variation in the physical and/or
biological conditions that support the pathogen and its
vectors and reservoirs; and third, if those abiotic and biotic
conditions can be delimited on maps, then both contem-
poraneous risk and future change in risk should be
predictable.

Here, we describe the major approaches to spatial
epidemiology. We begin by distinguishing between
approaches that involve actual geographical entities and
those that do not, and then focus primarily on the former.
These ‘spatially explicit’ approaches include mapping how
the spatial distribution of infectious diseases changes
through time (spatiotemporal dynamics); creating static
risk maps based on distributions of vectors, reservoirs and
disease incidence; and incorporating explicit landscape
elements. We argue that a modern concept of ecological
landscapes has only rarely been incorporated into disease
studies, and we suggest that greater incorporation of
explicit landscape approaches would improve our under-
standing and prediction of disease risk.
Maps or no maps?

Given that the transmission of pathogens leading to
disease requires the close juxtaposition of a susceptible
individual with an infected conspecific, vector, or environ-
mental source of pathogens, transmission dynamics are
inherently spatial processes. However, understanding the
spatial processes that contribute to variation in disease
transmission might not require maps of geographical
entities. One such example is the use of the metapopula-
tion concept, whereby hosts are assumed to exist in largely
isolated subpopulations, each subject to colonization and
extinction dynamics. Typically, such an approach does not
involve the creation of physical maps of abiotic or biotic
elements, but instead is ‘spatially implicit’ in avoiding the
placement of subpopulations or individuals at explicit
spatial coordinates. Because metapopulation approaches
to infectious disease have been reviewed recently [2], we
restrict our focus to spatially more explicit approaches.
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Mapping spatiotemporal dynamics of disease

Maps have been used for two distinct purposes in
epidemiology. The first involves retrospective analyses of
spatiotemporally dynamic epidemics to understand what
factors govern the spatial pattern and rate of spread of
diseases. For example, a spatiotemporally dynamic
approach was used to research foot and mouth disease
(FMD) in cows and sheep in the UK. During 2001, FMD
underwent explosive growth, resulting in the culling of
millions of livestock [3]. The effectiveness of alternative
culling strategies was predicted by using epidemiological
models in which farms of different sizes (number of
livestock), species composition (cattle only, sheep only, or
mixed), and infection status (infected or susceptible) were
mapped [4]. The spatial clustering and spread of FMD,
combined with the observation that larger farms contain-
ing both cattle and sheep weremost susceptible, were used
to model local and long-distance transmission rates. These
results were used to predict how different control
strategies (prophylactic vaccination, reactive vaccination,
or culling) would impact FMD epizootics [5]. The models
showed that vaccination programs could be effective if
they were spatially targeted and quickly followed FMD
detection [5]; however, for political reasons, culling was
the strategy used, in this instance, to stop the epizootic [3].

Spatiotemporally dynamic approaches have also been
used to describe the characteristics of ‘traveling waves’ in
epidemics of measles and dengue hemorrhagic fever.
Before vaccination was common, measles epidemics in
England and Wales tended to peak every other year and
traveled in waves from large cities to small surrounding
towns [6]. In large cities, measles occurred as endemic
disease until the number of susceptible children exceeded
a threshold, triggering an epidemic that traveled to
surrounding smaller towns. In these towns, the epidemic
was followed by the extinction of the measles virus
because the population of susceptible children was below
a critical threshold necessary to sustain transmission.
Where cities were connected to one another by surround-
ing towns, measles epidemics fluctuated synchronously,
but for cities at large distances from one another, biennial
peaks in incidence were out of phase [6]. Vaccination
caused synchronous epidemic cycles of measles to degrade
into an irregular, asynchronized disease [7]. In the first
demonstration of a travelingwave pattern in a vector-borne
disease, Cummings et al. [8] described how epidemics of
dengue hemorrhagic fever traveled fromBangkok through-
out Thailand at the extraordinary speed of w150 km
monthK1, repeating about once every three years.

Spatiotemporally dynamic analyses require that data
on disease incidence be highly precise, both in space and
time, and also require sophisticated spatial models to
describe patterns in detail. When these requirements are
met, the approach appears quite useful for targeting
disease prevention or treatment in space and time.

Static risk mapping

The second major use of maps in epidemiology is to
characterize spatial variation in contemporaneous (static)
ecological risk of infection and potential causes of that
variation. Ecological risk can be defined as the probability
www.sciencedirect.com
of exposure to an infection in the absence of active
preventative measures. Efforts to create risk maps
pertaining to specific diseases have increased in recent
years, and these can be categorized as being based on
distributions of arthropod vectors, vertebrate reservoirs,
or actual cases of disease in the host, usually in humans
(Table 1). Irrespective of the focal entity, the most common
procedure is to: (i) construct distribution maps of the
vector, reservoir, or disease; (ii) use remote-sensing data
(Box 1) and geographical information systems (GIS; Box 2)
to characterize the distribution of abiotic conditions and
sometimes vegetation that might influence the vector or
reservoir; (iii) select remote-sensing variables that are
most strongly associated with the distribution of the
vector, reservoir, or disease; and either (iv) project the
distribution of the identified remote-sensing variables to
either other areas or future times, to make predictions
about disease risk beyond the current map; or (v) guide the
imposition of interventions, such as pesticide application
or vaccination [9,10]. Because arthropod vectors, ver-
tebrate reservoirs and cases of disease in humans
represent distinct challenges for the mapping of disease
risk, each approach is discussed in turn.

Risk mapping based on vectors

Demographic rates of arthropod vectors of human patho-
gens tend to be sensitive to variation in temperature and
moisture. Cold temperatures induce mortality or dia-
pause, slow developmental rates, or reduce host-seeking
activity [11,12]. Similarly, rainfall creates habitat for
breeding (e.g. for mosquitoes and midges), and high
humidity is necessary for survival of some insect and
tick vectors [13]. The dependence of vectors on specific
abiotic conditions, combined with advances in remotely
sensing and mapping variation in abiotic conditions, has
stimulated efforts to create risk maps for vector-borne
diseases [9,10]. From an almost infinite number of abiotic
variables that can be spatially referenced on maps,
typically a subset is chosen and confronted with data
on either presence versus absence or abundance of
vectors. Those abiotic variables showing the greatest
degree of spatial concordance with vector distribution
are assumed to be causative and are often used to
predict current distributions of vectors in unstudied
areas or future distributions under different scenarios
of climate change (Table 1).

Limitations to this approach fall into two major
categories. First, disease risk or incidence is more closely
correlated with the abundance of pathogen-infected
vectors, rather than with simply presence of vectors, or
total abundance of vectors. For instance, Lyme disease in
North America is largely restricted to the northeastern
and upper Midwestern USA in spite of widespread
populations of the tick vector in southeastern and lower
Midwestern regions [14,15]. The invasion of North
America by West Nile Virus appears unrelated to changes
in the distribution or abundance of mosquitoes, but rather
with changes in the distribution of the virus in vectors and
avian reservoirs [16]. Only in rare cases [17] is the
abundance of infected vectors used to create maps of
risk. Second, such studies are fundamentally
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Table 1. Selective review of studies in which distribution of vectors, pathogen reservoirs, or human cases of disease are mapped to

explain current or to predict future distribution of specific diseases

Focal disease Mapped entity Scalea Explanatory
variablesb

Projectionc Caveats Refs

Studies based on mapping of vectors
Eastern equine
encephalitis

Abundance of
mosquitoes

Local % wetlands None No data on viral infection of
mosquitoes

[57]

Lyme disease Blacklegged tick
occurrence

Continental Temperature and
NDVI

Spatial No data on tick abundance
or infection; geographic
discordance between tick
and disease

[40,58]

Abundance of
infected
blacklegged ticks

Local Latitudinal
gradient

None Cause of latitudinal
gradient unknown

[17]

Abundance of
blacklegged ticks

Local, regional % agricultural
land, soil type,
forest type

None Mechanism not known [39,55]

Blacklegged tick
occurrence

Continental Temperature and
vapor pressure

Spatial and temporal No data on population size
nor infection prevalence

[56]

Malaria Anopheles
mosquito
distribution

Global Temperature Spatial and temporal No data on population size
nor infection prevalence

[26,59]

Tick-borne disease
generally

African tick
geographic
ranges

Continental Interaction of
temperature and
rainfall

None No information on tick
abundance or infection

[60]

Studies based on mapping of reservoirs
Trypanosomiasis Tsetse density Local Soil and

vegetation
moisture
(TM band 7)

Spatial Existence of unidentified
determinants of
distributions of both flies
and spatial values

[11,61]

Hantavirus pulmon-
ary syndrome

Abundance of
deer mice

Regional Vegetation Temporal Mechanisms linking habitat
to rodents unknown

[18]

Tularemia Abundance of
common voles

Regional Temperature,
elevation

None No predictive power [19]

West Nile virus Dead crows Local None None Predictors of dead crows
not explored; role of crows
not understood

[20]

Studies based on mapping of human cases
Hantavirus pulmon-
ary syndrome

Human cases Regional Vegetation Temporal Weakens ENSO-related
‘trophic cascade’
hypothesis

[24]

Human granulocytic
erhlichiosis

Human cases Local Proximity to
particular
rivermouth

None Mechanisms unknown [62]

LaCross encephalitis Human cases Local Ravines None Mechanisms unknown [28]
Lyme disease Human cases Local Soil type, forest

cover
None Mechanisms unknown [31]

Human cases Local, regional Soil type, urban
proximity

None Mechanisms unknown [32]

Human cases Local, regional Historical hotspot None Mechanisms unknown;
suggests host dispersal as
cause

[33]

Malaria Human cases Global Multivariate
abiotic

Temporal Only boundary conditions
considered

[25]

Human cases Regional Forest cover, land
use

Behavioral (bed net) Contrasts with global
predictions

[21]

Human cases Regional ‘Pooled sediment’
landcover

None Discordance between risk
and incidence

[22]

Onchocerciasis Human cases Regional Forest cover, land
use class

Temporal, behavioral Mechanisms unknown [29]

Schistosomiasis Human cases Regional NDVI,
temperature

None Mechanisms unknown [30]

Tick-borne
encephalitis

Human cases,
vectors

Continental NDVI,
temperature

Temporal [34,35]

Visceral
leishmaniasis

Human cases Local Proximity to
forests, pastures

None Mechanisms unknown [27]

aLocal and regional scales refer, respectively, to villages, towns, or other small-scale geopolitical entities, and state/province-to-national scale entities; continental scale is

self-explanatory.
bThose that are spatially correlated with, and potentially causative of, the distribution of the mapped entity.
cIndicates whether factors putatively determining current distributions are used to project either to the future or to new areas.
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correlational, so that the direct causal relationship linking
environmental conditions to vector distribution or abun-
dance remains to be established.

Risk mapping based on reservoirs

Less commonly, risk maps are created from distributions
of wildlife reservoirs for human pathogens (Table 1). Such
efforts have been most successful in predicting the risk of
directly transmitted zoonoses, such as hantavirus
www.sciencedirect.com
pulmonary syndrome. Abundance of the deer mouse
Peromyscus maniculatus reservoir in the southwestern
USA is predictable from plant community composition
(pine and oak abundance, which is determined with the
use of satellite imagery), and hantavirus pulmonary
syndrome cases, in turn, are predictable from mouse
abundance [18] (Figure 1). By contrast, in the case of
tularemia, a bacterial disease that is highly pathogenic to
wildlife and humans (causative agent, Francisella
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Box 1. Recent developments in remote sensing for environmental monitoring

Instruments used to monitor environmental conditions from some

distance form the basis of remote sensing. Some instruments perform

passive remote sensing [monitoring electromagnetic (EM) energy that

is emitted or reflected from a surface], whereas others perform active

remote sensing (sending pulses of EM energy that reflect off of a

target) [51]. The information is interpreted to extract information about

features on the surface of the Earth or in the atmosphere. Instruments

can be maintained on various platforms, such as earth-based vehicles,

airplanes, or satellites. Satellite-based remote sensing offers signifi-

cant benefits for many applications, because it provides historical data

for comparison and analysis; most other systems provide information

on a single time point of the environment for analysis, making change

detection either difficult or impossible.

There are numerous satellite-based remote-sensing systems that

can be used to monitor environmental conditions. They vary in three

key aspects: their spatial, temporal and spectral resolution [51]. The

spatial resolution, as measured by the picture element (pixel)

resolution provides information about the level of spatial detail that

can be interpreted. Among civilian-based systems, there are three

major resolution groups: high-resolution (0.5–1.8 m); mid-resolution

(2.0–36 m); and low-resolution (O36 m) [52]. High-resolution systems

are of increasing interest because of their usefulness in evaluating the

classification accuracy (ground-truth) of environmental data that has

been interpreted from mid- and low-resolution imagery. However,

high-resolution imagery often covers much smaller areas on the

ground in a single image so that high-resolution swaths are in the

8–28 km range whereas mid-resolution images typically cover a

70–185-km swath [52]. Platforms also vary in their temporal re-

visitation rate, making them more or less appropriate for monitoring

daily or seasonal environmental changes. Temporal resolution can be

as much as 16–17 days. Particularly with passive systems, factors such

as cloud cover over a region might extend this timescale to the next

revisit that is cloud-free. Particularly in regions of the world with

seasonal variation marked by intensive rains, this might represent

several months.

Spectral resolution is an area of major development in remote

sensing. Previous systems, such as Landsat and SPOT, recorded

reflected energy over relatively large bands of the electromagnetic

spectrum. Current interest is focusing on hyperspectral imaging, the

simultaneous acquisition of images in many, narrow, contiguous,

spectral bands. The resulting hyperspectral data are intended to offer a

more detailed view of the spectral properties of a region and make

interpretation more accurate. Radar and lidar (light detection and

ranging) represent two other systems for remote sensing. Active

microwave systems, in particular, represent an active area of

investigation. Three civilian systems currently are available and nine

are planned by 2010 [52].

Many of the challenges facing the use of remotely sensed data involve

issues related to data management and access related to the collection,

archiving and accessibility of data on global scales [52]. The detailed

coverage provided by each individual sensor generates extremely large

amounts of data whose primary value comes from researchers being

able to use them to examine changes in environmental conditions over

time. When this is coupled with the large numbers of planned sensors

ease of data integration and seamless access will help determine the

extent of the usefulness of this technology to epidemiologists, as well as

to researchers in other fields. Unfortunately, this aspect of data

management appears least developed and the lack of planned sources

for themetadataonthematerials thatwillbecollectedwillmake itdifficult

to locate needed materials.
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tularensis), GIS descriptions of the habitats most suitable
for the common voleMicrotus arvalis, which is considered
to be an important natural reservoir, did not predict the
locations in which European hares Lepus europaeus
undergo epizootics [19]. Recently, GIS modeling combined
with statistically robust measures of spatiotemporal
clustering of epidemiological events demonstrated that
the locations of dead American crows Corvus brachy-
rhynchos around New York City during 2000 could be used
to predict the locations of human victims of West Nile virus
during 2001 [20]. Five of seven human cases of West Nile
encephalitis occurred in areas designated high or medium
riskbased on crowmortality.American crowsare frequently
killed byWest Nile virus, although their status as a wildlife
reservoir remains unknown [16].

Risk mapping based on disease incidence

For some diseases, particularly those of humans, exten-
sive data sets with good spatial accuracy exist, in contrast
to the typical situation for mapping vectors and reservoirs.
Spatial data on disease incidence can be used to
extrapolate the risk of exposure from current distributions
to new geographical areas or future times, under the
assumption that incidence and risk are highly correlated
(Table 1). Risk maps based on distributions of actual
disease cases can be seen as incorporating spatial
variation in all risk factors, such as the distribution of
vectors, reservoirs and human contact with key species
(Figure 2). Some major disadvantages of using disease
incidence to estimate risk include: (i) discrepancies
between risk and incidence. For instance, the widespread
use of preventative measures, such as mosquito bednets or
filtration of drinking water, can strongly reduce incidence
www.sciencedirect.com
in areas where risk of exposure is high [21]. A related
complication occurs when high exposure to a parasite leads
to immunity and, consequently, to low disease incidence for
the subset of thepopulationpreviously exposed [22]; (ii) poor
or inconsistent standardsof case reporting, especiallyacross
geopolitical boundaries. Under-reporting is a notorious
problem, but for diseases with generalized symptoms and
diagnostic difficulties, over-reporting might be quite com-
mon. Variation in types of surveillance (passive, active,
clinical and laboratory) or case definitions can reduce
consistency (Figure 2; [23]); and (iii) discrepancies between
locations where infection was obtained and where the
disease case was reported. This is particularly a problem
for fine-scale analyses. For all of these disadvantages, a key
unresolved issue is when the factors simply contribute to
random error and when they introduce spatial or temporal
biases into geographical analyses.

The following examples illustrate how spatial distri-
butions of disease incidence have been used to either
postulate specific habitat features associated with disease,
or to extrapolate from current to future distributions.

Hantavirus pulmonary syndrome In a retrospective
study of hantavirus pulmonary syndrome in the south-
western USA, areas of high incidence could be identified on
the basis of both Landsat Thematic Mapping bands,
representing soil type and moisture, and vegetation struc-
ture [24] (Figure 1). Satellite data could then be used to
predict locations where outbreaks were expected [24].

Falciparum malaria Rogers and Randolph mapped the
worldwide distribution of falciparummalaria to derive the
multivariate (temperature, precipitation and vapor pres-
sure) abiotic boundary conditions within which malaria
occurs [25]. They then projected the future distribution of
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Box 2. Recent developments in GIS for analysis of spatial data in epidemiology

GIS are techniques to input, store, retrieve, manipulate, analyze and

output data that have spatial attributes associated with them [53]. As

such, they form an underlying tool for examining landscape

epidemiology. They can be used to locate cases of disease, and

establish the spatiotemporal relationships among the cases and

selected environmental features. The need to integrate data derived

from various sources accurately and efficiently manipulate and

represent disparate data has driven the development of software

systems over the past decade.

More recent advances have focused onmethods to analyze spatially

associated data, with earlier attempts driven primarily by the creation

of maps to represent the results. Attempts to apply traditional

statistical methods were generally unsatisfactory because underlying

spatial correlation among observations violates one of the key

assumptions (independence of observations) made for most analyses.

This violation typically results in the assumption of greater statistical

significance than is warranted [54].

Three major areas of statistical analysis of GIS data have received

most attention. Much progress has been made in applying or

developing methods to detect spatial and/or temporal clusters of

cases [54]. However, most methods simply detect potential clusters,

leaving the causes of the clustering unknown. If the purpose of the

investigation is to identify places and times for further investigation or

for intervention this is less problematic than if the goal is to identify

environmental risk factors, themselves.

Geostatistical methods used to estimate disease exposure levels at

unsampled locations have also advanced in recent years [54]. For

example, several modeling approaches that account for spatial

correlation have been developed to estimate human exposure to

disease agents vectored by Ixodes scapularis ticks in unsampled

regions [17,39,55,56]. Finally, modeling and estimating risk factors for

disease outcomes through empirical Bayesian or generalized linear

mixed modeling approaches are receiving increased attention as

methods that can incorporate correlations in observation sets.
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those boundary conditions according to climate projections
to predict the future distribution of malaria. Their
projections, based on climatic conditions correlated with
human malaria cases, suggested a much smaller increase
in cases of malaria with global warming than did
projections based on climatic conditions correlated with
mosquito distributions [26].
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Visceral leishmaniasis Werneck et al. used spatial
analysis of visceral leishmaniasis cases in northern Brazil
to identify proximity to forests and pastures as the major
risk factor [27]. The parasite causing visceral leishma-
niasis is transmitted from vertebrate reservoirs to
humans by sand fly vectors and, in some cases, domestic
dogs are known to be important reservoir hosts.
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TRENDS in Ecology & Evolution 

Figure 2. Changes in annual predicted risk of hantavirus pulmonary syndrome (HPS) based on differences in local environmental conditions at sites of HPS cases in the

southwestern USA (a) compared with a random sample of the rural community during the 1990s (b–f, 1192, 1993, 1995, 1996 and 1997, respectively). Risk is modeled using

logistic regression analyses to identify significant differences between HPS case sites and HPS-free control sites in Thematic Mapper (TM) bands, digital numbers and

elevation. Risk is represented on an arbitrary scale from low (dark blue) to medium (yellow) to high (red). There is significant inter-annual variation in risk that corresponds to

changes in the numbers of human cases reported.
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Identification of forests and pastures, rather than perido-
mestic habitat, as particularly risky habitats suggests a
wildlife, rather than domestic, reservoir for the Leishma-
nia parasite [27].

LaCrosse Encephalitis Similarly, for LaCrosse ence-
phalitis in Illinois, Kitron et al. used GIS and spatial
statistics to identify physical features such as gullies and
ravines, which often contain both natural and artificial
breeding sites for mosquitoes, as major risk factors [28].

Onchocerciasis and schistosomiasis About 50% of the
variation in onchocerciasis incidence among West African
villages was explained by variation in forest cover and
landcover class, with little explanatory power of rainfall,
temperature, or soil [29]. Satellite-determined normalized
difference vegetation index (NDVI) was a strong predictor
of schistosomiasis distributions in Bahia, Brazil [30].

Tick-bornediseasesDiseases borneby tickshave received
considerable attention from spatial epidemiologists. In an
www.sciencedirect.com
early study of Lyme disease in Maryland, Glass et al.
found that individuals living in rural residences on sandy
loamy soils and embedded within forest had increased risk
[31]. By contrast, both human and canine exposure to
Lyme disease in the Midwestern USA is associated with
residences near urban forests and on sandy soils [32]. In
New York State, Lyme disease incidence is spatially
aggregated at a scale of w120 km, which appears to
pertain to dispersal distances of key tick hosts rather than
to environmental variables [33]. The distribution of tick-
borne encephalitis in Europe can be predicted from NDVI
and land-surface temperature [34]. Although NDVI
appears to represent suitable abiotic conditions for the
tick vector, land-surface temperature has a more subtle
effect on the transmission dynamics of the pathogen from
vertebrate host to tick. Transmission of tick-borne ence-
phalitis requires infected nymphs and uninfected larvae
to co-feed simultaneously on individual hosts, and the
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probability of co-feeding depends on synchronous seasonal
activity by larvae and nymphs, which, in turn, depends on
seasonal changes in land-surface temperature [34].
Because the tick-borne encephalitis transmission cycle is
an unstable consequence of conditions favoring larva–
nymph synchrony, climate change scenarios are predicted
to shift tick-borne encephalitis initially northward in
Europe, followed by its almost complete loss from the
continent [35]. These examples illustrate how remote-
sensing data on biotic and abiotic features, combined with
spatial data on disease incidence, can be used to explore
underlying causes of disease risk. However, they also
suggest that, when vectors, reservoirs, pathogens and
humans respond differentially to biotic and abiotic factors,
correlations between remotely sensed habitat features
and disease incidence might not provide insights into
underlying mechanisms.
Incorporating explicit landscape elements

If vectors, reservoirs and pathogens are influenced only by
highly localized habitat features, then spatial epidemiol-
ogists need not concern themselves with the structure of
the surrounding landscape. However, landscape ecologists
have compiled many examples of how landscape context,
in addition to localized habitat features, influence popu-
lations of animals and plants [36–38]. Only recently, and
for only a few disease systems, have the types, sizes and
positions of landscape elements (e.g. habitat patches,
physical or biotic gradients, and type of matrix surround-
ing patches) and their connectivity been considered
potentially important drivers of risk or incidence. For
Lyme disease, tick abundance in a landscape has been
correlated with patch shape and the degree of connectivity
between high quality patches for ticks and other patches,
suggesting that host movements contribute importantly to
tick distribution [39–41]. Both the abundance and pro-
portion of ticks infected with the Lyme disease spirochete
increased with decreasing size of forest fragments in a
suburban matrix in New York State [42]. Spatial modeling
of raccoon rabies in the northeastern USA revealed that
specific landscape features, such as large rivers and
mountain ranges, can strongly influence the rate and
direction of rabies invasion, interrupting the otherwise
wave-like spread [43,44]. Landscape composition (percent
of suitable habitat) and landscape configuration (frag-
mentation of habitat) were key positive determinants of
Sin Nombre virus (the agent of hantavirus pulmonary
syndrome) seroprevalence in deer mouse populations
across Canada [45]. Similarly, degree of fragmentation of
white-footed mouse habitat was positively associated with
the prevalence and intensity of infection of mice by the
raccoon roundworm Baylisascaris procyonis [46].

These examples illustrate that, at least in some cases,
the structure and composition of the landscape surround-
ing focal sites must be considered together with the set of
highly localized biotic and abiotic features to understand
disease risk. Two major research challenges are determin-
ing how often disease risk can be predicted from local
conditions alone, and how often the landscape context
modifies or overrides the impact of local conditions.
www.sciencedirect.com
Caveats and future directions

The overarching question for spatial epidemiologists is
whether disease risk or incidence can be explained by (or
predicted from) the distribution of vectors, reservoir hosts
or human cases. But distribution is a difficult concept.
Creating distribution maps based on presence or absence
(i.e. boundary conditions) is relatively simple, but
excludes potentially crucial information about abundance
of vectors, cases, and so on, within their range. Even when
the abundance of vectors, reservoirs, or disease incidence
are mapped, misleading results might occur if:
(i) Vector infection varies spatially (e.g. Anopheles
mosquitoes are abundant in large geographical areas
with no malaria because the Plasmodium parasite has
been eliminated), destroying an assumed correlation
between simple vector abundance and disease risk.

(ii) The abundance of vertebrate reservoirs is highly
dynamic spatially or temporally [14], which could lead
to significant variation in risk that would be invisible to
cross-sectional mapping exercises.

(iii) Vertebrate reservoirs are less strongly (or simply)
delimited by climatic or vegetation variables that can
be remotely sensed and organized with GIS.

(iv) The disease system is in disequilibrium; for
example, when vector or pathogen range is expanding.
In the case of an expanding range, the assumption that
the vector or pathogen lives everywhere it can cur-
rently live is violated and, therefore, projecting future
distributions is compromised.
The importance of landscape composition (number and

types of patches) and configuration (spatial relationships
among patches) [47] to disease dynamics is only beginning
to be explored. Landscape structure has a strong potential
to influence disease dynamics through impacts on both
abiotic conditions (e.g. abundance of edges or changes to
environmental gradients) and species interactions that
are important to disease spread and prevalence. For
instance, by reducing or eliminating predators on disease
reservoirs, fragmentation could increase disease risk
above that expected from local habitat quality alone [48].
Pathogens, vectors, reservoirs and hosts are all embedded
within ecological communities within which they interact
directly or indirectly with many other species. As diseases
invade new areas or change distribution with climate and
land-use change, a major research challenge will be to
determine the level of ecological complexity that is
necessary to predict spatial dynamics accurately. At one
extreme is the notion that species (including pathogens)
are restricted to specific abiotically defined niches, which
can be accurately mapped and tracked into the future [49].
At the other is the argument that trophic interactions
among species and landscape structure contribute cru-
cially to current patterns of abundance and distribution,
such that future distributions cannot be predicted simply
by tracking changes in abiotic conditions [50]. The spatial
ecology of disease seems to be an excellent platform from
which to explore these issues.

Finally, the use of spatial models to generate risk maps,
followed by assessment of the sensitivity and specificity of
these models, could lead to the formulation of specific
plans to manage or control disease. Techniques of spatial
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epidemiology can generate recommendations concerning
where to target interventions to prevent disease spread,
but the usefulness of suggested interventions will require
collaborative efforts among ecologists, epidemiologists and
health care professionals to evaluate feasibility and
efficacy. Such collaborations, if successful, would stimu-
late the further development of this emerging research
area.
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