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We developed an empirically based model of density-dependent vole population
growth based on experimental data on population dynamics of Microtus pennsvivani-
cuy in large ficld enclosures. Statistical analysis of the data indicated that both density
dependent regulation and seasonal effects were important in influencing vole popula-
tion growth. Together, these two factors explained approximately one-hall’ of vari-
ance in the realized per capita rate of change exhibited by experimental vole
populations. A population model assuming simple functional forms (linear for
population density and sine for seasonality) provided an adequate description of the
data. with more complex functional forms leading to at best minimal improvements,
The natural rate of population increase, averaged over all seasons, was estimated as
(mean + SE) r,,, = 6.0(+04) yr " This estimate suggests an impressive power of
population increase. implying that each female vole could be replaced by about 400
daughters a year later (assuming density-independent growth). A survey of literature.
however, indicates that this is by no means the largest rate of increase observed in a
vole population,
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Since Elton (1924) noticed that population numbers of
voles and lemmings exhibit periodic oscillations of great
amplitude. an enormous amount of empirical and theo-
retical work has been devoted to elucidating the mecha-
nisms underlying this striking phenomenon (reviews in
Krebs and Myers 1974, Batzli 1992, Stenseth and Ims
1993). Although much progress has been made towards
this goal. a definitive synthesis still eludes us (Hansson
1987, Batzli 1992). We believe that this state of affairs
is largely due to a lack of communication between
theoretical and empirical ecologists working in this field.
Although a large number of theoretical models has been
advanced. and enormous amounts of data collected,
there has been little systematic effort to parameterize the
models and the test their predictions with the data (but
see Hanski et al. 1993, Hanski and Korpimiki 1995).
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The most basic building block of a population dy-
namics model is density-dependent population growth.
A most-commonly followed procedure in building a
population model is to assume some form of popula-
tion growth (e.g.. the logistic equation), and then to
add to this starting point various terms for population
interactions with other species in the community (and.
possibly. spatial redistribution). Thus. population
growth is the logical starting place in a program for
systematically building empirically based models of ar-
vicoline (microtine) population dynamics. Our goal in
this paper, therefore, is to begin laying the foundation
for such an empirically based theory. Specifically. we
will develop a model of vole population growth based
on experimental data on Microtus pennsvivanicus popu-
lation dynamics in large field enclosures (Ostfeld and
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Canham 1993, 1995, Ostfeld et al. 1993). These data are
uniquely suited for our purpose because:

1. We can employ a single-species model without time-
delays in fitting these data. Although predators were
not excluded from enclosures, we found no evidence
of time-delays in abundance of predators or preda-
tion rate (Ostfeld and Canham 1995). Similarly,
there were no lagged effects of high population
density that could be mediated by long-lasting
changes in vegetation (Ostfeld et al. 1993).

. We can use a model without emigration/immigration
terms because vole populations were maintained in
enclosures.

3. The study provides a particularly informative data
set for estimating density-dependent population reg-
ulation, because vole density was manipulated exper-
imentally.

4. Finally, the experiment was run continuously for
almost two years, which allows us to estimate sea-
sonal changes in population dynamics.

ra

Methods
Experimental design

Full details of experimental design are presented in
Ostfeld and Canham (1993, 1995). Briefly. a set of nine
40 m by 40 m hardware-cloth enclosures was con-
structed in a lowland meadow at the Inst. of Ecosystem
Studies in Millbrook, New York in spring, 1990. Pri-
mary vegetation in the meadow was a mixture of
hayfield grasses (Bromus inermis, Poa pratensis, Arrhen-
atherum elatius) and forbs (Galium mollugo, Solanum
carolinense, Solidago spp.). Vole populations within
each enclosure were culled to 2-3 breeding pairs ini-
tially, and then allowed to begin population growth.
The nine enclosures were arranged in a randomized
block design, with three blocks, and three density treat-
ments. Three of the enclosures were managed at low
density and three at medium density by removing
subadult individuals during the biweekly schedule of
live-trapping. The desired targets for the low- and
medium-density enclosures were about eight, and about
20 adult voles per enclosure, respectively. In the three
high-density enclosures, voles were neither removed nor
introduced: these populations grew to levels of about
50-90 voles enclosure ' (Ostfeld et al. 1993).
Trapping was conducted for two consecutive days
every second week from June 1990 to May 1992, using
Longworth live-traps set in a five-by-five array with 7.5
m between traps. Two regular trapping sessions were
canceled due to cold weather. All rodents were given
individually numbered metal eartags for identification,
and standard data on sex, body mass, and reproductive
condition were recorded. Capture probabilities of voles
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averaged 86% over the course of the study (Ostfeld and
Canham 1995); thus, population density was estimated
by calculating the minimum number known alive
(Krebs 1966).

Statistical analysis

The per capita rate of population change is defined as
r=dN/Ndt =d/di(In N). A discrete approximation of
r, which is referred to as the realized per capita rate of
population change, 1s

1
METON M
where N, is the population density at time ¢, and 7 is
the finite time interval over which population change is
measured. Because in two experimental treatments
(medium- and low-density) voles were removed, the
formula (1) needs to be modified as follows:

- I In No++R ¢ @)
T N, » -
where R, . ;is the number of voles removed at 1 + T.
The value of T used in the analysis must be a
multiple of time intervals at which data were collected
in the experiment (2 weeks). T should be short enough
for environmental conditions (population density and
season) not to change too much. On the other hand, if
T is too short, the population density will not have
enough time to change during this period, and the ratio
of change in population numbers to the measurement
error (“‘the signal/noise ratio”) may be unacceptably
low. Preliminary examination of the data suggested to
us that 7 =4 weeks, or |/I13th of a year (since the units
of r, are yr') was the optimal choice given these
conflicting demands. An additional consideration is
that on two occasions a biweekly census was missed,
leading to two intervals of 4 weeks each. Using 7 =4
weeks allowed us not to have to exclude these data.
Finally, T'= 4 weeks seems a good choice on biological
grounds, since it approximates time between litters for a
female under favorable conditions, as well as time from
birth to sexual maturity (Hasler 1975, Keller 1985).
Two periods during the experiment yielded biased
estimates of r,. First, becausec the experiment was
started by reducing the vole density in each enclosure to
two pairs of breeding adults, there were no young voles
present at the beginning of the experiment. An estimate
of the intrinsic rate of population increase assumes that
the population is close to a stable age distribution. It is
unlikely that the experimental vole populations ever
achieved a truly stable age distribution. being continu- -
ously affected by variable field environment. Neverthe-
less, we felt that such obvious gross departures from
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this state, as heavy predominance of mature adults
during the first month, should be eliminated. Thus, the
first month’s data were omitted. Second. a severe
drought (<40% of long-term monthly mean rainfall)
occurred in the summer of 1992, depressing both popu-
lation growth rates and densities of voles in enclosures.
To avoid a negative estimation bias due to such a rare
event, the data for 12 weeks starting with week 51 were
excluded from the analysis. This left 162 data points for
analysis.

Estimated r, (for each 4-week period in each enclo-
sure) were the dependent variable in all analyses. We
explored the influence of population density by regres-
sion, and combined effects of density and season were
investigated with the analysis of covariance. Next, a
model of seasonally affected population growth was
fitted to the data using nonlinear methods (see below).
Possible effects of serial correlation between sequential
values of r, from the same enclosure were investigated by
submitting residuals from the fitted model to time-series
analysis. Autocorrelation coefficient between subsequent
values of residuals was estimated as 0.146. Because this
correlation coefficient was small (and not significantly
different from zero), our statistical analyses treated each
r, as an independent data point. All the analyses were
performed using the software package Statistica.

Results

A linear regression of r, on N, provided strong evidence
for density-dependent regulation of vole populations in
enclosures (Fig. 1). However, although the effect of
population density was statistically highly significant
(F=54.13, P<0.000001), this factor alone explained
only one-quarter of variation in r,. The unexplained
variation is due to demographic stochasticity, observa-
tion errors, and environmental influences. Demographic
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Fig. 1. A plot of realized rates of population change vs
population density, combining all seasons. The slmLEhL line
15 fitted by linear regression, r,=6.20 — 0.092N,, (R* = (.25,
£ <0.001).
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I—u_. The relationship between the realized rates of popula-
tion Lh‘mi__e and population density during the most favorable
(August-October) and least favorable (January-March) sea-
sons. Straight lines are fitted by linear regression (the propor-
tion of variance explained by lincar regression is 87 = 0.47 and
0.34 for the most favorable and least favorable season, respec-
tively). The difference between the slopes of the two regres-
sions is not statistically significant.

effects are expected to be a prominent source of vari-
ability, since many values of r, were based on popula-
tions consisting of only 10-20 individuals (note how
variance around the regression line appears to decrease
as N, increases). On the other hand, measurement er-
rors probably were not a large source of variation, since
the experimental technique ensured that > 80 of post-
weaning voles present in enclosures were captured dur-
ing biweekly trapping censuses, and this high capture
probability did not change seasonally (R. S. Ostfeld.
unpubl.).

One systematic environmental factor affecting popu-
lation growth is seasonality, as suggested by annual
increases and decreases in vole populations (see Fig. 1
in Ostfeld and Canham 1995). This potential influence
was investigated by the analysis of covariance (AN-
COVA), with r, as the dependent variable, time (or
season) as the independent variable, and N, as the
covariate. “Season” was a qualitative (class) variable
that varied from 1 to 13. It corresponded to each
4-week period, starting in January, and ending in De-
cember.

The results of this analysis indicated that both the
effects of season (£ = 10.01, P < 0.001} and population
density (F=45.04, P <0.001) were highly significant.
Peak increase rates were observed during late summer—
early fall, and r, was lowest during late winter—early
spring. Plotting r, vs N, for these two seasons separately
shows a cleaner relationship between these two vari-
ables (Fig. 2).

Our next step was to fit a seasonally modified logistic
model to the data:

= P[]+ €8I0 2R(7 + @)] — gN,. (3)



The independent variables in this model are time 7 (in
units of yr) and N, (voles in the enclosure). Estimated
parameters are r,.. the rate of increase at low popula-
tion density averaged over all seasons (this parameter
corresponds to the natural rate of population increase
in the unmodified logistic equation); &, the amplitude of
seasonal oscillation in the rate of population increase;
o, the phase: and g, the strength of density dependence.
Fitting model (3) to the data by nonlinear least-squares.
we found that both the seasonal (£) and density-depen-
dent (g) effects were highly significant (in both cases
P <0.001). The least-squares estimates (+standard
errors) of parameters were as follows:

=60(+0.4) yr ', £=0.53+0.08),

rl Tan

®="0.08(+0.02)yr, andg=0.08(+0.01)yr "vole "
The model explained 48% of variance in r,.

The model (3) assumes that the slope of density
dependence, g. does not vary with season. To test this
assumption, we fitted to data the model (3) with an
additional term [l + & sin 2n(f + )]V, expressing the
interaction between seasonal and density-dependent ef-
fects. However, this term increased the proportion of
explained variance only to 49%, and was not statistically
significant (P =10.18), suggesting that the model (3)
provides an adequate description of the data (this is
further supported by approximate parallelism of slopes
in Fig. 2). The consequence of the constant slope g is that
the “carrying capacity” will oscillate with season, since
K(1)=r [l +€sin2a(r + w))/g
{this can be seen in Fig. 2 by observing how the
intersect of the fitted line with the abscissa shifts with
season). K(¢) is the population equilibrium density set
by a combined effect of resource limitation and social
interactions. In the seasonal logistic model, population
density eventually converges to K (and fluctuates
around it, if the system is subject to density-indepen-
dent perturbations). In the seasonal model (3). by con-
trast. K(r) changes with time, and the population
density never converges to it. Instead, population den-
sity 1s tracking a “moving target”. attempting 1o catch
up to K(r) as it is increasing. and overshooting it when
it starts to decrease. The seasonally averaged K(r) is
estimated as g/r,,.. = 75.7 voles per enclosure, or 473
vole ha

Another assumption of model (3) is that the effect of
N, on r, is linear. This assumption was tested by fitting
a model in which N, was transformed using the Box-
Cox transformation (Sokal and Rohlf 1981). The eff ect
of including an extra parameter on the proportion of
variance explained by the model was minimal (it in-
creased from 48% to 52%), suggesting that the linear
form provides a reasonable approximation.

max
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Model (3) also assumes that a sine function is an
appropriate description of the effects of seasonality on
the intrinsic rate of increase. Smooth trigonometric
functions are often used in the mathematical literature
(e.g.. Rinaldi et al. 1993). By contrast, Hanski et al.
(1993, Hanski and Korpimiiki 1995) employed a discon-
tinuous step-function. The adequacy of these two choices
as functional forms for seasonal effects can be visually
assessed by subtracting density-dependent effects from
each data point, and then plotting each resulting estimate
of the rate of increase at N, =0, r!' =r, + gN,. against
time (Fig. 3). A discontinuous change in r with season
appears not to be supported (Fig. 3), although the
amount of variation present in the data precludes any
strong conclusions.  Similarly, although some other
smooth function may provide a better fit to the data than
the sine, given the degree of scatter in the data such an
improvement is likely to be marginal. Since the sine form
has a virtue of simplicity and is widely used in modeling
literature. there appears to be little reason to reject it in
favor of some other more complicated alternative.

Discussion

Our major results can be summarized as follows. Two
fuctors, density-dependent regulation and seasonal in-
fluences, together accounted for one-half of variance in
realized per capita rate of population growth exhibited
by vole populations. A population model assuming
simple functional forms. linear for population density
and sine for seasonality, provided an adequate descrip-
tion of the data, since more complex functional forms
yielded minimal improvements in the proportion of
variance explained. The unexplained variance is proba-
bly due to the effects of demographic stochasticity and
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Fig. 3. The relationship between the intrinsic rate of popula-
tion change and scason. Each point corresponds to a trans-
formed data point #=r + gV, plotted against time. The
curve is the sine function fitted to the data using nonlincar
least squarces.
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environmental factors other than density and season.
These stochastic factors are clearly an important source
of fluctuations in vole numbers, because they were
responsible for about half of variance in r,. In addition,
episodic severe fluctuations of climate can have a pro-
found effect on vole populations, as was demonstrated
by the drought during the summer of 1992,

Our results provide a clear indication that vole dy-
namics can be affected by strong density-dependent
feedback operating with little, or no delay. This conclu-
sion about an overall pattern of density dependence is
supported by the analyses of density dependence in
specific demographic parameters (Ostfeld and Canham
1995). Ostfeld and Canham (1995) found that high
density had an immediate effect on individual growth
and reproduction (shorter breeding seasons, lower rates
of recruitment, and older age at sexual maturity). How-
ever, population density did not affect reproductive
activity during the height of the breeding season or
survival rates of juveniles and subadults (survival of
adults was slightly affected by density during the second
half of the experiment). Our analysis here suggests that
density dependence in individual growth, maturation
rates, and reproduction was enough to impose an over-
all pattern of density dependence, even though other
demographic parameters were unaffected. Density inde-
pendence in survival and reproductive rate during the
mid-breeding season may contribute to the unexplained
variation in per capita rate of population growth.

To maintain experimental populations under differ-
ent density levels, we had to enclose voles within fences.
As the fences restricted both immigration and emigra-
tion, we could not examine the effects of population
density on per capita rate of dispersal, nor of dispersal
rates on realized rates of population growth. However,
a large literature on dispersal in small rodents indicates
that per capita dispersal rates are rarely density depen-
dent (reviewed by Gaines and McClenaghan 1980,
Stenseth and Lidicker 1992, but see Krebs 1992). In-
stead, dispersal rates typically are highest during the
increase phase of a multiannual cycle, and lowest dur-
ing the peak and decline phases, and dispersal generally
is thought to be a nonregulating, or even antiregulating,
factor in rodent population dynamics (Lidicker 1975,
Gaines and McClenaghan 1980). Thus, the absence of
dispersal from our data set may have strengthened our
ability to detect density dependence in rate of popula-
tion growth. The lack of emigration also may have
contributed to the very high K (473 ha ') observed in
our populations (Ostfeld 1994).

General implications

_One of the most important parameters determining
qualitative dynamics of ecological models (such as sta-
ble equilibria, limit cycles. or chaos) is the natural rate
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of population increase. Our estimate of this parameter
(averaged over all seasons) was r,,,, =6.0 yr='. This
estimate suggests an impressive power of population
increase, since it implies that each female will be re-
placed by about 400 daughters a year later (assuming
that no density-dependent factors will come into play).
How well does this estimate correspond to the theoreti-
cal maximum rate of population increase, and to in-
crease rates observed in other studies and other species?

The theoretical r,,,, can be calculated as follows.
Under favorable conditions (low population density,
abundant food, and no predators), females in the gen-
era Microtus, Clethrionomys, or Lemmus produce a
litter of 4-8 offspring every 20-30 d. The age to sexual
maturity is also 20-30 d, and a female may produce
4-6 litters during her lifetime (Hasler 1975, Keller
1985). We can represent the exponential growth of a
vole population with the following simple stage-struc-
tured model:

"’14 T {LQ)Ff
F, y=RJ+ PF, 4)

where J, and F, are the numbers of juvenile and repro-
ductive females at time ¢, L is the litter size, and T is the
time step (both the time between successive litters and
the maturation time of juveniles). P is the proportion of
breeding females that survives to reproduce again, and
R 1s the proportion of juvenile females that becomes
reproductive. Because model (4) is linear (there is no
density dependence). population growth obeying this
model will be exponential. The exponential rate of
increase is r=(1/T)Ink,, where i, is the dominant
eigenvalue of the projection matrix associated with the
model (4), and is related to the model parameters in the
following way:

by =(P+ /P*+2LR)2

(for mathematics of such stage-structured population
models see, e.g., Caswell 1989). Now, assuming conser-
vative values of parameters (since we are interested not
in a theoretical maximum, but in a seasonal average of
r), let T=30d or 1/12 yr and L = 6. If 70% of newly-
born survive the juvenile stage, and 70% of juveniles
become mature females (Hansson 1987), then R = (0.5.
If each female has 4 litters, then at each time step,
one-fourth of females will be lost to the population of
reproducing females, therefore P = 3/4. For these val-
ues of parameters, r = 6.05 yr~—'. This is very close to
the value of r,,,, estimated by us for M. pennsylvanicus.
We can compare these estimates with previously pub-
lished estimates of yearly production per female.
Koshkina (1970) calculated that a single L. lemmus
female will leave at least 1500-2000 descendants after
one year (this estimate accounts for seasonal effects on
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Table 1. Maximum increase rates observed in field populations of Microtus voles (penn. = pennsylvanicus, calif. = californicus,
town. = townsendii, ochr, = ochrogaster, agre, = agrestis). In all entries (except Erlinge 1974) increase rate was determined by
locating a period of approximately linear increase of log-transformed numbers. Only sustained increases beginning at low
population densities and occurring during the most favorable season are reported. Time period column indicates the length of
the period of approximately exponential growth. Numbers column indicates population numbers at the beginning and the end
of this period, as measured by investigators (usually, the minimum number alive). The last entry is an estimate by Erlinge (1974)

based on guantitative information about vole reproduction.

Species Reference Numbers Time period Season r(yr—")
M. penn. Krebs et al. 1969 3.5-225 6 weeks Aug.-Sep. 16.1
M. penn. Gaines and Krebs 1971 25-25 4 weeks Aug.-Ocl. 10.0
M. penn. Boonstra and Boag 1987 15-75 6 weeks Jul.-Aug. 13.9
M. penn. Ostfeld and Canham 1995 1230 4 weeks Jul. 11.9
M. calif. Krebs and Delong 1965 42-79 2 weeks Nov. 16.2
M. calif. Krebs 1966 1.5-20 10 weeks Feb.-May 124
M. town. Boonstra 1977 10-90 10 weeks Aug.—Nov. 1.4
M. town, Beacham 1980 10-100 10 weeks Sep.-Oct. 12.0
M. ochr. Myers and Krebs 1971 3-12 6 wecks Sep.—Oct. 12.0
M. agre. Erlinge 1974 — Summer 13.8
Average 13.0
reproduction), which corresponds to r,,,,=6.62-6.90 References

yr ' Batzli et al. (1980) arrived at a similar estimate
Froax = 117 yr=" for L. sibiricus. While these estimates
are somewhat higher than our estimate r,,,, = 6.0 yr ',
this should be expected. since lemmings tend to have
slightly faster generation times and larger litter sizes,
compared to voles.

It i1s also interesting to consider what the theoretical
maximum of r may be. Assuming ideal conditions (that
is, the peak of reproductive season), T=20d (1/18 yr),
100% survival and recruitment of juveniles, R =1, and
8 litters per female, P =7/8. This combination of
parameters results in » = 14,39 yr—'. To put this num-
ber in perspective, the population characterized by such
an r would double every 2.5 weeks. We would expect
that conditions conducive to such an enormous rate of
increase would be rarely achieved, and when achieved.
extremely transitory. Nevertheless, there is a number of
documented cases in which vole populations have in-
creased almost as rapidly (Table 1). Thus, a seasonal
peak of r=12 yr~' would not be an unrealistic value
for most vole and lemming populations.

We believe that further progress in understanding the
causes of fluctuations in populations of arvicoline ro-
dents will be enhanced by the creation and testing of
empirically based models that integrate the effects of a
variety of extrinsic and intrinsic factors. Here we have
provided a foundation for further model development
by estimating the relative importance of density-depen-
dent regulation and seasonality in influencing the real-
ized rate of population growth. A more complete
synthesis can be attempted by including density-inde-
pendent factors (probably including dispersal) and
lagged density-dependent factors in future empirical
and theoretical efforts.
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