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Abstract We present an exploratory analysis of reported county-specific incidence
of Lyme disease in the northeastern United States for the years 1990–2000. We briefly
review the disease ecology of Lyme disease and the use of risk maps to describe local
incidence as estimates of local risk of disease. We place the relevant elements of local
environmental and ecological variables, local disease incidence, and (importantly)
local disease reporting in a conceptual context to frame our analysis. We then apply
hierarchical linear models of increasing complexity to summarize observed patterns in
reported incidence, borrowing information across counties to improve local precision.
We find areas of increasing incidence in the central northeastern Atlantic coast coun-
ties, increasing incidence branching to the north and west, and an area of fairly stable
and slightly decreasing reported incidence in western New York.
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1 Introduction

Lyme disease is a zoonosis caused by the spirochete Borrelia burgdorferi, which
cycles between tick vectors and dozens of species of vertebrate hosts. The first medi-
cal description of Lyme disease appears in Steere et al. (1977), although earlier reports
describe incident cases of erythema migrans, the localized rash serving as a primary
symptom of Lyme disease (Scrimenti 1970). The US Centers for Disease Control and
Prevention (CDC) began surveillance for the disease in 1982 (Schmid et al. 1985),
working with state and local health departments and health care providers to encour-
age reporting of cases. In 1990, the Council of State and Territorial Epidemiologists
approved a standardized case definition for reporting and agreed to implement state
requirements to report Lyme disease; these policies were implemented nationally in
1991 (Orloski et al. 2000). Currently, Lyme disease is one of the most common vec-
tor-borne diseases in the United States, with almost 90,000 cases reported between
1992 and 1998 (Orloski et al. 2000). Although cases have been reported from 49 states
and the District of Colombia (Orloski et al. 2000), the bulk of reported cases has
occurred in the northeastern United States (Connecticut, Delaware, Maine, Mary-
land, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode
Island, and Vermont, and the District of Columbia), with a second concentration in
the midwestern United States (Michigan, Minnesota, and Wisconsin).

The ecology of Lyme disease depends on the life cycles and interactions between
the causative agent, the vector, and the various hosts. Larval and nymphal tick vectors
(the black-legged tick, Ixodes scapularis, in the eastern United States) feed primarily
on smaller vertebrates (Lane et al. 1991; Barbour and Fish 1993; Mather 1993). White-
footed mice (Peromyscus leucopus) play a crucial role as both a preferred immature
tick host and principal reservoir of B. burgdorferi (Levine et al. 1985; Mather et al.
1989; Anderson and Magnarelli 1993; Fish 1993; Mather and Ginsberg 1994; Keirans
et al. 1996; Donahue et al. 1997). Adult ticks feed primarily on white-tailed deer
(Odocoileus virginianus) (Piesman and Spielman 1979; Wilson et al. 1990). Each gen-
eration of ticks must become infected via these vertebrate hosts, because there is no
transovarial transmission between egg-laying females and their offspring (Piesman et
al. 1986; Patrican 1997). Once infected, ticks can infect a human host during a blood
meal (Barbour and Fish 1993).

There can be a great deal of spatial variability in Lyme disease incidence. The tick
vectors are patchily distributed both regionally and locally, regardless of infection
status (Kitron and Kazmierczak 1997; Wilson 1998). In particular, the presence of I.
scapularis is positively associated with sandy soils, woody or shrubby vegetation, and
the presence of deer (Ginsberg and Ewing 1989; Kitron et al. 1991, 1992; Duffy et al.
1994; Glass et al. 1994, 1995). Countering this spatial variability in vector presence
is the tendency of tick loads on mice to remain relatively constant, even in the face
of substantial variation in the densities of both mice and questing ticks (Goodwin et
al. 2001). Host abundance and community composition also can vary dramatically in
both space and time (van Buskirk and Ostfeld 1995; Giardina et al. 2000).

Spatial variability of Lyme disease hosts and vectors suggests that construction of a
risk map, i.e., a map of the potential risk of (human) infection could be
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useful. Such a map would indicate areas where tick control, public education, or
other interventions might be most beneficial (Kitron 2000; Orloski et al. 2000). Maps
of vector abundance (perhaps as functions of environmental variables), vector infec-
tion rates, human-vector interactions, and reported human cases all address different
components of the spatial pattern of risk of Lyme disease. Each map requires differ-
ent data and reveals different elements of the interacting processes determining Lyme
transmission. The literature contains examples of risk maps for Lyme disease for par-
ticular communities (Glass et al. 1995; Dister et al. 1997), for particular states (Kitron
and Kazmierczak 1997; Frank et al. 2002), and for the entire nation (Dennis et al.
1998; Estrada-Pena 1998; US CDC 2001). Risk maps for Lyme disease have been
constructed from incidence data (Kitron and Kazmierczak 1997; Frank et al. 2002),
tick distributions (Dennis et al. 1998), and environmental risk factors (Glass et al.
1995; Dister et al. 1997; Estrada-Pena 1998; US CDC 2001). Risk maps tend to be
constructed either from a snapshot of the disease at a particular point in time (Glass
et al. 1995; Dister et al. 1997), or by pooling or averaging disease incidence across the
entire period of surveillance (Kitron and Kazmierczak 1997; Estrada-Pena 1998; US
CDC 2001; Frank et al. 2002).

Risk maps are potentially useful tools for public health practitioners, but Lyme
disease presents particular challenges in their creation, analysis, and interpretation.
Surveillance data for Lyme disease can be problematic for a number of reasons: rec-
ognition by health-care providers of the signature symptoms over the study period,
the associated potential lack of accurate diagnoses, imprecise serologic results, uneven
case detection, reporting biases, and difficulty relating location of report to location
of exposure (Kitron and Kazmierczak 1997). Thus, Lyme disease may be substantially
under-reported, with the probability of reporting varying with stage of disease, age
of the patient, and the interest and collaboration of healthcare providers (Orloski et
al. 1998; Naleway et al. 2002). Despite these concerns, surveillance data show that
both the incidence and the geographic range of human cases has increased steadily,
particularly in the northeastern United States (White et al. 1991; Orloski et al. 2000),
spreading outward from the initial diagnoses near Lyme, Connecticut. Kitron (2000)
provides a brief but thorough discussion of risk maps for vector-borne diseases, which
we expand on in the discussions that follow.

In this study, we explore spatio-temporal patterns in temporal changes in reported
incidence for human cases for the years 1990–2000. Our aim is primarily exploratory,
as any observed patterns and changes in reported incidence reflect a combination
of patterns in true incidence and local diagnosis and reporting rates. The descriptive
goal is important, as it provides insight into the evolving geographic coverage of the
disease, as well as into evolving coverage of the surveillance system monitoring the
disease. Although we cannot entirely separate the two components, we can draw
conclusions on particular aspects of each.

In particular, we report county-level trends in reported Lyme disease incidence
(rates per 100,000 persons) in the northeastern United States for the years 1990–2000,
using data from the CDC’s national surveillance system. The goal of this study is a
descriptive analysis of county-specific changes in the annual rate of reported cases,
i.e., assessment of the spatial pattern of rate changes in an attempt to identify areas
experiencing fast observed growth. It is important to note that observed growth (or
decline) could be a result of true increases (decreases) in disease incidence, or of
changes in reporting practices, surveillance effort, and accuracy of diagnosis. All of
these issues are likely to be of interest here, and motivate our discussion of risk maps
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in Sect. 3. We also examine geographic patterns of missing county-level reports and
their relationships with observed patterns in the incidence of disease. Previous inves-
tigations by the CDC concentrate on the years 1994–2000, because of varying data
availability prior to 1994. We include available data from 1990–1994 and explore its
compatibility with the proposed models.

2 Lyme disease surveillance data

Since 1992, the CDC has compiled reported cases of Lyme disease based on the stan-
dardized case definition approved by the Council of State and Territorial Epidemiol-
ogists (Orloski et al. 2000). Using this data base, we determined the annual number
of cases of Lyme disease in each county in the northeastern United States (Pennsyl-
vania, Maryland, Delaware, Massachusetts, New Jersey, New Hampshire, Vermont,
New York, Connecticut, Rhode Island, and Maine, and the District of Columbia) from
1990 to 2000. To standardize for differences in county population size, we converted
raw case numbers into incidence proportions per 100,000 people at risk, using the
1990 US Census population sizes. For simplicity, we used the 1990 Census population
sizes as denominators, noting that adjustments for population growth would change
results only slightly.

Before examining the data, some review of the nature of public health surveillance
data (Teutsch and Churchill 1994; Brookmeyer and Stroup 2004) is in order to provide
a context for the analyses that follow. In particular, Lyme disease surveillance data
comprise a mix of passive, active and laboratory surveillance (Orloski et al. 2000). Pas-
sive surveillance relies on health-care providers to report any new diagnoses to either
local or state public health departments. The health department in turn assesses the
report with respect to the standardized case definition (perhaps including confirma-
tory laboratory tests), then electronically submits those cases meeting the standard
to the CDC via the National Electronic Telecommunication System for Surveillance
(NETSS). Active surveillance involves proactive contact of health-care providers by
local or state health departments requesting information regarding any incident diag-
noses of Lyme disease, followed by case assessment and reporting to the CDC. Finally,
laboratory surveillance requires diagnostic laboratories to report all positive Lyme dis-
ease test results directly to the state or local health department. Because laboratory
results typically include only limited patient information, the health department often
must follow up with health care providers to verify that a case meets the standardized
case definition before reporting the case to the CDC. Not all states include active
and laboratory surveillance efforts, and those in the study area that do (Connecticut,
Maryland, Massachusetts, New Jersey, New York, and Rhode Island) include them
for only part of the study period (Orloski et al. 2000).

For any particular year, a number of counties do not provide reports regarding
Lyme disease. We term such occurrences as “no reports” (NRs). The NRs may rep-
resent an absence of cases, an absence of diagnoses, or an absence of reports. Table 1
gives the number of counties with NRs by year. In each year and in each state, some
reported cases were attributed to the state, but not to a specific county, and we ignore
these cases in the following analysis. In a typical year, we find approximately 45–50
NRs from the 245 counties in the study area. The higher numbers of NRs associated
with 1992 (99 counties) and 1993 (106 counties) are due primarily to Pennsylvania (67
counties) reporting cases only at the state level for these 2 years.
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Table 1 Numbers of reported cases of Lyme disease in the northeastern United States, 1990–2000

Year Total number of
cases reported

Number of coun-
ties with (non-
zero) reports

Number of coun-
ties with “no
report” (NR)

Cases identified to
state level, but not
county

1990 6,108 189 56 130
1991 7,355 195 49 455
1992 8,041 146 99 1,333
1993 6,829 139 106 1,235
1994 11,454 200 45 81
1995 10,380 197 48 237
1996 15,023 201 44 296
1997 11,280 199 46 184
1998 15,111 201 44 114
1999 14,480 192 53 55
2000 15,621 189 56 156

Figure 1 provides maps of the total county-specific number of reported cases per
100,000 population (left map) and the county-specific number of years with NRs. We
shade each map by quintile so roughly one-fifth of the counties appear in each gray-
scale. For visual comparison, darker grayscales indicate higher quintiles of cases and
lower quintiles of NRs. The visual similarity in pattern roughly suggests a pattern of
reporting mirroring that of (reported) disease incidence.

In general, as might be expected, we note higher numbers of reported cases per
100,000 persons at risk during the study period in counties along the central Atlantic
coast, with reduced numbers radiating out from the locations of the initial docu-
mented cases in Connecticut. We note a pocket of reduced numbers of reports in the
burroughs of New York City, and in western Massachusetts.

Figure 1 also appears to reveal some isolated pockets of higher reporting coverage
that appear ahead of the generally perceived wavefront of incidence, as indicated by
higher numbers of areas reporting cases. These areas generally correspond to counties
with higher population densities than their surrounding neighbors (e.g., counties near
Ithaca, Rochester, and Buffalo, New York). This could be due to the increased number
of individuals at risk, but it might also reflect communication patterns among physi-
cians and subsequent raised awareness (making cities “closer” in a communication
sense than they appear in a mileage sense).

3 Elements of a risk map

Any spatial summary (map or analysis) of disease incidence requires a proper con-
text for interpretation. As mentioned in the introduction, multiple spatial processes
contribute to the observed pattern of Lyme disease incidence (in humans). Figure 2
shows these components and focuses the purpose of this report.

Beginning on the left-hand side of Fig. 2, we observe the environmental com-
position providing a background setting for the disease process. These factors (e.g.,
type of soil, land use, forest) typically are available for mapping by site surveys
or remote sensing. The factors describe the habitats for hosts (deer mice, white
tailed deer, and humans), as well as the vector (I. scapularis), and define areas
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Fig. 1 Maps of numbers of Lyme disease cases per 100,000 population (1990 US Census) reported
to the US Centers for Disease Control (left) and number of years with no (county-specific) reports
(right)

where the hosts and (infected) vectors are likely to interact, allowing transmis-
sion. People, mice, deer, and ticks moving through this environment interact, at
times allowing transmission of infection to humans at points indicated in the
middle map.

The (unobserved) middle map in Fig. 2 represents the location of infection for
all true cases. Coupled with information regarding the number of people at any
location at a given time, this map would provide information regarding the true
risk of infection as a function of location and time. However, we often do not
observe the true incidence map, but rather a “filtered version” represented by the
two schematic maps on the right-hand side of Fig. 2. The shaded map represents the
probability of a given case being diagnosed and reported as a function of county;
darker shading represents counties with higher probabilities of accurate diagnosis
and reporting. Diagnosis and reporting are two separate processes, each with its own
potential for geographic variation, but for simplicity, we aggregate them as a single
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Fig. 2 Conceptual elements of a Lyme disease risk map. Moving from left to right, we find the
geographic habitat structure for both hosts and vector, next the geographic distributions of various
hosts and the vector, then the unobserved true incidence pattern which is “filtered” by county-specific
reporting rates, yielding the observed pattern of reported locations (gray circles) and the hidden
pattern of unreported locations (open circles)

surveillance reporting filter in Fig. 2. The result of this “filter” is the observed inci-
dence pattern on the right, where we observe only the filled circles (we also show
the “lost” cases via empty circles in Fig. 2, but these would not be observed). We
note that the surveillance filter can add or delete cases (e.g., due to false positive or
false negative diagnoses, respectively), an issue of particular importance for diseases
and syndromes with high public awareness and relatively modest diagnostic tools
(e.g., Lyme disease). Finally, we note that location uncertainty also has an impact on
reporting, because the reported residential locations might not correspond to infec-
tion locations, as mentioned in the introduction, but we ignore such errors here for
clarity.

Figure 2 is helpful, not only in providing a view of the complexity of the situation,
but also in focusing attention and aiding interpretation. An accurate risk map (for
human infection) seeks an unbiased estimate of the center map, but descriptions of
the components of this risk map are also of interest. Some previous risk maps of
Lyme disease focus only on mapping the habitat and location of the vector (e.g., Glass
et al. 1995); others address only the reported outcomes (e.g., US CDC 2001). The
former limits attention to the left-hand maps in Fig. 2, the latter the map on the far
right.

Analysts typically view the (shaded) “filter” map as a nuisance, a source of bias
between the observed and true incidence maps, but we suggest this map merits atten-
tion in its own right as a summary of spatial pattern and variation in the disease
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surveillance system itself. That is, estimates of this shaded map provide valuable infor-
mation regarding the surveillance process, identifying areas with adequate reporting
and others needing improvement. The filter map can be further deconstructed into
additional maps of local reporting practices, local diagnostic accuracy, and even local
health-seeking behavior. Each map in Fig. 2 merits public health interest in its own
right, but also contributes to the overall map of observed disease incidence and
risk.

Closer examination of the maps of incidence counts and no reports (Fig. 1)
provides insight into patterns in the typically unobserved “reporting map” conceptu-
ally defined in Fig. 2. More specifically, consider the five burroughs of New York City
and the counties in western Massachusetts that reflect concentrations of NRs within
the general “core” area of reporting. In both, reduced reporting also appears to play
a role in defining the pattern of reported cases.

For this report, our approach is to view temporal changes in the spatial pattern
on the right-hand side of Fig. 2 as a means of gaining partial insight into both the
reported incidence map and the shaded reporting map. Although we cannot com-
pletely separate the two (which would provide clearer insight into the true risk map
in the center of Fig. 2), we do find interesting patterns suggesting evolution of both
incidence and reporting over the study period. These patterns provide an impor-
tant step toward understanding both the spread of infection and local aspects of the
surveillance system itself.

4 Statistical models to describe patterns

To describe the evolution of Lyme disease incidence and reporting in the northeast-
ern United States, we consider local linear regressions of the natural logarithm of
the annual crude incidence ratios for each county. For simplicity (and supported by
general diagnostics), we assume that log-incidence ratios follow normal (Gaussian)
distributions, and explore temporal trends in the reported ratio of cases to the 1990
county-level population size for each county.

We ignore NRs in our local regressions of log incidence rates, but then incorpo-
rate them as missing observations in a broader Bayesian context, allowing posterior
prediction of the missing values rather than simply ignoring them. Some NRs, partic-
ularly those near the periphery of the study area, could reflect zero counts that were
not reported, while likely values of NRs within prevalent areas are more difficult to
ascertain. In any case, assumptions of “missing at random” or “missing completely at
random” appear overly simplistic. Finally, recall that some NR patterns, such as those
in Pennsylvania, are direct results of evolving reporting practices and requirements.

To begin, let Yit and ni denote the number of reported cases and the 1990 popu-
lation size, respectively, for county i in year t (we omit a time subscript on ni since
we use only the 1990 population sizes). For each county, we fit (via least squares) the
local linear regression model

log(Yit/ni) = β0 + β1t + εit,

where the error term, εit, follows a normal (Gaussian) distribution with variance
σ 2

i . For the local models, we assume a constant variance within (but not necessar-
ily between) counties. For comparison, we also fit a single regression to the county-
specific data within each state (now assuming constant variance across each state).
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Not surprisingly, there is considerable variation in county-specific reported Lyme
disease incidence. We next consider random effects models, wherein both the slope
and the intercept vary by county. We use a hierarchical Bayesian formulation, allowing
either spatially unstructured (exchangeable) or spatially structured slopes or inter-
cepts. First, for comparison with the local (maximum likelihood) regression models,
we consider a Bayesian version of the foregoing overall regression model, in which
we assign diffuse prior distributions to both β0 and β1, as a comparison to the least
squares (maximum likelihood) results for the model.

Next, we generalize the model to

log(Yit/ni)|u0i, u1i ∼ N(μit, σ 2),

μit = β0 + β1t + u0i + u1it,

where μit represents the expected local log incidence rate (given the values of the
local random effects, u0i and u1i). We now assume a constant variance across the
entire study area in order to link regression models across counties. Retaining diffuse
priors for β0 and β1, we assign mutually independent, exchangeable priors

u0i ∼ N(0, σu0
2)and

u1i ∼ N(0, σu1
2)

to the county-specific random effects that serve as local adjustments to the overall
intercept and slope. We complete the model by assigning vague conjugate inverse-
gamma hyper-priors to σu0

2 and σu1
2—specifically inv-gamma(0.5, 0.0005) priors

as suggested by Kelsall and Wakefield (1999). The result is a model with county-
specific adjustments centered around an overall slope and intercept. The impact of
the local random effects is to yield posterior estimates of the local intercept, (β0 +u0i),
and slope, (β1 + u1i), representing compromises between the overall values across all
counties and the values suggested by each set of county-specific data, i.e., the model
“borrows strength” across all counties to improve estimates of the county-specific
intercepts and slopes.

Since the elements of a Lyme disease risk map outlined in Fig. 2 involve spatial
patterns, we also consider borrowing strength locally rather than globally by replacing
one or both of the exchangeable priors with a spatially correlated prior, effectively
yielding either intercepts or slopes that are compromises between values supported by
the local data and those supported by spatially neighboring counties. A popular fam-
ily of such spatial prior distributions is the set of conditionally autoregressive (CAR)
priors (Besag et al. 1991; Wakefield et al. 2000; Waller and Gotway 2004, Sect. 9.5),
and we consider those defined by

u1i|u1j, j �= i ∼ N
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where wij = 1, if regions i and j share a common border, and 0 otherwise. By conven-
tion, wii = 0. Besag (1974) shows that this set of conditional distributions defines a
valid joint normal distribution, although the use of adjacency weights defines a singular
precision matrix yielding an improper prior distribution (Besag and Kooperberg 1995;
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Besag et al. 1995; Waller and Gotway 2004, Sect. 9.5). However, Besag et al. (1995)
show that the impropriety is caused by the joint distribution being defined for pair-
wise contrasts between local random effect values; the addition of a “sum to zero”
constraint on the random effects allows proper posterior inference for all model
parameters. We complete the model by again defining diffuse conjugate inverse-
gamma(0.5, 0.0005) hyper-prior distributions for σu0

2 and σu1
2 (Kelsall and Wakefield

1999). Such models are very common in spatial smoothing of regional disease rates
(disease mapping), but most models use only random intercepts with some notable
exceptions (Knorr-Held and Besag 1998; Schootman and Sun 2004). Our interests
here involve changes over time, motivating consideration of the CAR prior for the
slope parameters.

5 Results

Figure 3 reveals the crude county-specific 1990–2000 time trends in log(Yit/ni) by
state, with state-specific trends indicated by dashed gray lines. The plots suggest the
adequacy of a linear model of log incidence and indicate a fair amount of relatively
symmetric variation around the general trend observed in each state, with possible
exceptions in New York (NY), Pennsylvania (PA), and one county in Vermont (VT).
Gaps in reporting are also apparent.

For comparison with results from more complicated models, Fig. 4 provides a map
of the ordinary least squares (OLS) estimates of county-specific time trends (β1i)
in the log incidence proportion, ignoring NRs. The general pattern is one of higher

    
  

 
    

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

CT log rate trends

  
  

  
   

  

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

DE log rate trends

  
   

 

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

DC log rate trends

 
    

 
  

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

ME log rate trends

    
 

 

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

MD log rate trends

 
 

  
 

 
  

   

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

MA log rate trends

  
 

 
  

  
 

 

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

NH log rate trends

  
    

     

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

NJ log rate trends

        
  

 

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

NY log rate trends

 
  

  

  

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

PA log rate trends

  
 

  
   

 
 

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

RI log rate trends

 

   
       

1990 1994 1998

0
4

8
12

Year

lo
g(

ra
te

)

VT log rate trends

Fig. 3 County-specific log incidence rates by state (1990–2000). Thin lines connect county-specific
annual log incidence rates with gaps representing “no reports”. Thick segments connect annual state-
wide log incidence rates
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Fig. 4 Ordinary least squares estimates of county-specific time trends in log incidence proportions,
1990–2000. Three counties (indicated by stripes) do not have enough reports to enable estimation of
a time trend

Table 2 Ordinary least
squares estimates of the global
intercept and slope

Estimate SE

β0 3.931 0.063
β1 0.071 0.010

slopes (faster increases) in counties with the highest incidence rates, and small but
negative slopes roughly in a band across upstate New York. We also note that three
counties (two in northern New York and one in western Pennsylvania) have zero or
one reported values, making local regression estimation impossible without additional
assumptions regarding the NRs.

The results shown in Fig. 4 build estimates based on local data alone. In moving
toward compromises between local, global, and neighboring data, we next consider
global OLS estimates based on all counties in the study area. Table 2 provides sum-
mary statistics indicating a small, positive increase in the log incidence proportion.
This small positive slope is offset by considerable variation among counties, as shown
in Fig. 3, resulting in an R2 of only 0.02, a situation we hope to improve through the
use of county-specific parameters.

Moving to Bayesian formulations, Table 3 presents posterior inference for the same
model, with diffuse priors on the (still global) intercept and slope, and an inverse
gamma (0.5,0.005) hyper-prior on the overall variance σY

2. We see very close agree-
ment with the OLS (equivalent to maximum likelihood) estimates in Table 2. Again
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Table 3 Posterior inference
for global intercept and slope

2.5 Percentile Median 97.5 Percentile

[β0|Y] 3.807 3.931 4.058
[β1|Y] 0.050 0.072 0.092
[1/σ 2|Y] 0.414 0.440 0.467

the slight positive global increase in incidence is offset by the large variation across
counties.

We next add random effects as described in the preceding section. Fig. 5 pro-
vides the 95% interval estimates (confidence intervals for OLS estimates and poster-
ior credible intervals for the Bayes’ estimates) for each model considered, namely:
OLS, the global “general Bayes” model summarized in Table 3, the random effects
model with exchangeable (spatially unstructured) priors on both intercepts and slopes
(“Exchangeable”), the random effects model with exchangeable intercepts and spa-
tially structured slopes (“Spatial slope”), and the random effects model with spatially
structured intercepts and slopes (“Both spatial”). For the random effects models, the
intervals in Fig. 5 represent the posterior variation associated with the global val-
ues β0 and β1, and do not incorporate the additional variation associated with the
random effects. While the mean values of the estimated global intercept and global
slope drop with the addition of random effects, the overall slope estimates remains
“significantly” positive (the 95% interval estimate excludes zero). We also note that
the model with the exchangeable intercept random effects and spatially structured
slope random effect (the “spatial slope” model) increases the precision of the overall
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Fig. 6 Posterior median estimates of the slope for models using spatially unstructured intercept and
slope random effects, spatially unstructured intercept and spatially structured slope random effects,
and spatially structured intercept and slope random effects, using same categories as the local OLS
slopes in Fig. 4)

estimate of the time trend as evidenced by the narrower credible interval in Fig. 5,
suggesting some benefit to borrowing strength from neighboring counties. The model
with spatial priors on random effects (the “both spatial” model) associated with both
the intercept and the slope suggests even more precision in the estimation of the
intercept parameter, but these results are coupled with some unusual behavior, as the
following detailed discussion shows.

Figure 6 provides maps of the posterior median local slope estimates, (β1 + u1i),
i = 1, . . ., 245, for each of the three random effects models, using the same shading
categories we used for the local OLS estimates in Fig. 4. We note that no estimates
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occur in the lowest or highest categories, reflecting the influence of data from other
counties and an overall “shrinkage” of slopes and intercepts toward global or local
means. This is perhaps most notable for Aroostook County, Maine (the northernmost
county on the map), where the local OLS estimate (based on two data points) is highly
positive in Fig. 1, but the compromise estimate between either all (exchangeable) or
neighboring (spatial) data results in the small negative slope estimates shown in Fig. 6.
All models mirror the initial pattern exhibited in Fig. 4, i.e., the greatest increases in
the (log) incidence proportions occur in counties near the focus of the epidemic, not
near the edges, as we might expect if we were capturing a strong “wavefront” signal.
The model with exchangeable intercept and spatial slope random effects exhibits the
greatest amount of spatial smoothing among the posterior slope estimates and sug-
gests a general spatial pattern with arms of increasing local incidence surrounding a
broad area of slightly decreasing incidence in upstate New York for the time period
considered.

Curiously, posterior estimates of the local slope (β1 + u1i) shown in Fig. 6 for the
model with spatial intercept and spatial slope random effects do not differ markedly
from those in the exchangeable (non-spatial) model. To see why this may be, Fig. 7
shown the local log incidence rates and the fitted linear models under OLS and each
of the random effects models for NY. Here we see the impact of adding random
effects reflected in the “pinching” of the intercept estimates, and the adjustment to
local slopes. In the case of the model with spatially structured intercept and slope
random effects, the intercept “pinch” is severe, increasing precision on the intercept
estimate, but resulting in slopes quite removed from the local data values. In contrast,
the model with exchangeable intercept and spatial slope random effects incorporates
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the spatial smoothing of slope estimates observed in Fig. 6, yet maintains a fair amount
of fidelity to the original data. Based on this assessment, the model with exchangeable
intercepts and spatial slopes seems to provide the best qualitative fit to the data.

6 Discussion

The foregoing concepts and analyses contribute several topics to the growing litera-
ture of risk maps for Lyme disease. First, the elements of a Lyme disease risk map,
outlined in Fig. 2, synthesize several concepts raised, in part, by previous risk maps
and provide a conceptual mechanism for comparing existing maps and proposing new
analytic models. Second, regarding patterns of local reported incidence rates over the
period 1990–2000, we see fairly linear changes in the local (log) incidence rates for
most counties, with random variation of county-specific slopes and intercepts around
central statewide rates. Local patterns include higher reported rates in the central
northeastern Atlantic counties, near the area of the original identification of the dis-
ease, with continued increases over time along two “arms,” one to the north and one
to the south, skirting the Adirondack Mountains in eastern New York.

The collection of small-magnitude negative slopes in western New York raises sev-
eral issues. Had a “wavefront” of reported incidence swept through the area during
the study period, we might well expect a series of zero reported counts (or NRs),
followed by a sudden increase generating steeper slopes in counties just behind the
wavefront. No such pattern appears; in fact, the estimated local slopes in western New
York suggest that any initial spread of disease through these counties occurred prior
to the study period, as fairly stable and slightly decreasing (log) reported incidence
rates appear in this area. However, while a general pattern of a wavefront does not
appear over the time period and locations under investigation, the smoothing prop-
erties of the approach could conceivably hide small local anomalies consistent with
more focused spread and outbreaks meriting additional investigation.

The relationship between incidence and NRs shown in Fig. 1 suggests a connection
between the spread of the disease and the spread of reporting practices. We do not
explicitly include this relationship in the models presented here, but the conceptual
framework of Fig. 2, coupled with the hierarchical structure of the models considered,
suggests modeling mechanisms for including spatially heterogeneous and perhaps
spatially correlated reporting filters, provided we obtain data on reporting accuracy.
In addition, the framework of Fig. 2 also suggests possibilities for simulation studies
addressing the impact of variations in reporting practices and accuracy in modeled
risk maps. Such surveillance of disease surveillance is an area of growing interest
(Buenconsejo 2004) and could be linked into the model in future work.

The foregoing results represent our first steps toward more thorough analyses of
the data, moving from summaries of observed patterns to prediction of patterns as a
function of local covariates. Future work will involve environmental and ecological
covariates, e.g., percent forest cover, soil types, forest fragmentation, deer density,
and small mammal diversity, building on elements of the underlying disease ecology
represented in the interaction between the maps on the left side of Fig. 2.

More formal modeling will require more formal model choice and fit assessments.
Because of the exploratory nature of the present results, the preceding simple lin-
ear models provide insight into fairly consistent descriptions of incidence patterns
across models, with the hierarchical structure allowing ready prediction of missing



98 Environ Ecol Stat (2007) 14:83–100

reports and inclusion of spatial correlation through the prior distributions for the
random effects. The somewhat unusual behavior of the model with spatially correlated
intercepts and slopes merits closer scrutiny to determine whether its origin is related
to some quirk of the specific data considered or lies deeper within the structure of the
model.
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