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Advances in modeling highlight a tension between analytical accuracy
and accessibility
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There is a persistent tension in ecological analysis

between the call for increasingly accurate characteriza-

tion of processes and the need for accessible models that

provide both novel inference and valid forecasts (Clark

et al. 2001, Hargreaves and Annan 2006, Keyl and Wolff

2008). Statistical and mathematical models are, by

definition, designed to simplify a noisy reality in order

to hone understanding. However, determining the

relative trade-offs between simplicity and accuracy is

not always straightforward. Ecological systems are

complex and involve diverse communities that interact

variably in space and time to influence ecosystem

processes. Too much simplification can render model

inference and predictions useless to the managers who

need them. And yet, if model implementation is

complicated and interpretation is not transparent, then

even a well designed model may still not be used. Thus, a

major goal of current ecological dialogue is to define the

appropriate level of analytical complexity required to

understand and forecast population, community, and

ecosystem processes (Clark 2005, Bolker 2009, Cressie et

al. 2009, de Valpine 2009). This dialogue is spurred on

by an increasing number of citations that call for

statistical frameworks more appropriate to ecological

data than traditional, agriculturally derived methods

(Gratzer et al. 2004, Clark 2005, Hobbs and Hilborn

2006), as well as through advances in computing that

facilitate implementation of complex models (e.g., Win-

BUGS). The topic is also of critical importance as

ecologists increasingly recognize the need (and answer

the call) to both conduct research and transfer

understanding in ways that can be used in policy and

decision making. Here, I briefly review and discuss the

evolution of recent modeling approaches in a wildlife

disease system in order to better understand the complex

Bayesian framework developed by Heisey et al. (2010).

Heisey et al. (2010) address a pervasive challenge in

disease ecology: inferring transmission dynamics from

observed patterns in disease prevalence data. Quantify-

ing the latent transmission process is key to understand-

ing spatiotemporal progression of infectious diseases

and devising management strategies (Anderson and

May 1992, Schauber and Woolf 2003, Wasserberg et

al. 2009) but nearly impossible to observe directly (e.g.,

Cooper and Lipsitch 2004, Farnsworth et al. 2006,

Wonham et al. 2006, Foley et al. 2007). This challenge is

exacerbated in wildlife disease systems, where data

limitations and sampling variation can effectively

obscure real disease dynamics. Disease prevalence can

vary geographically and temporally due to variation in

host densities, age or gender structure, environmental

characteristics, and time since introduction. Disease

prevalence observations integrate across all of these

considerations plus sampling mechanisms. Distinguish-

ing the importance of any one in the transmission

process requires careful analysis.

These challenges are especially prominent in the

ongoing effort to manage the spread and impact of

chronic wasting disease (CWD) among cervid popula-

tions in North America. CWD is caused by an infectious

prion and was first documented in the 1960s in

Colorado. The disease has since spread to captive and

wild cervid populations in at least 14 other states and

two Canadian provinces (Williams et al. 2002, USGS

2009). CWD infection eventually causes mortality,

although the time from exposure to death is unknown

and may vary significantly (USGS 2009). Despite

considerable efforts to model CWD progression in both

mule deer and white-tailed deer populations (e.g., Miller

and Conner 2005, Farnsworth et al. 2006, Joly et al.

2006, Miller et al. 2006, Osnas et al. 2009, Song and

Lawson 2009, Wasserberg et al. 2009), quantifying the

relative importance of demography, spatial structure,

and temporal trends in defining CWD prevalence

remains an important research objective. The limited

nature of the data that is often available to assess CWD

dynamics (i.e., hunter-gathered) and the complexity of

spatiotemporal epidemic processes in general make this

objective a worthy target for diverse modeling ap-

proaches.

Deterministic models (i.e., SIR methods) have been

instrumental in understanding epidemic progression in

many infectious systems (e.g., Anderson and May 1992).

However, the accuracy of these methods generally relies

on how well researchers understand the process of
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infectious transmission. For example, these methods

typically assume either density- or frequency-dependent

transmission dynamics, a choice that is known to have

direct implications on inferences (Schauber and Woolf

2003, Smith et al. 2009, Wasserberg et al. 2009). This is

especially problematic in CWD, where the actual mode

of transmission may be a mix of density-dependent and

frequency-dependent interactions (Schauber and Woolf

2003, Miller et al. 2006, Wasserberg et al. 2009).

Available management options to control CWD epi-

demics include selective and non-selective culling to

remove infected individuals or decrease deer density,

respectively. Effective management employing these

options is intrinsically tied to the spatiotemporal

transmission process (Schauber and Woolf 2003, Was-

serberg et al. 2009). Mule deer and white-tailed deer

herds are generally structured as small matrilineal units

of females with relatively small seasonal home ranges

and males that wander more broadly. Higher densities

of deer within and among these units could lead to

density-dependent opportunities for infectious transmis-

sion, although if the units remain separated for much of

the year then the overall population prevalence of CWD

infected deer could also be independent of overall

abundance. If transmission is density-dependent then

non-selective culling through hunting could be used to

decrease deer density below the threshold needed to

sustain the epidemic. If the transmission process is

frequency-dependent then CWD eradication is contin-

gent on host eradication (Wasserberg et al. 2009). To

further complicate the issue, the infectious CWD prion

can persist in soil and feces and infect deer indirectly

over unknown temporal scales (Miller et al. 2004,

Tamguney et al. 2009). Thus, environmental decontam-

ination or local extirpation of all potential host species

would also be necessary to eradicate CWD, regardless of

more dominant forms of transmission. The relative

importance of different modes of transmission remains

an open question and a distinct challenge in managing

the CWD epidemic.

Statistical models can be used to explore and identify

generating forces behind patterns of disease prevalence

without explicitly assuming density- or frequency-

dependent transmission. In this manner, more precise

understanding of the causes of spatial and temporal

heterogeneity in CWD prevalence can provide insight

into the transmission process. Miller and Conner (2005)

used model selection criterion (AIC; Burnham and

Anderson 2002) to compare 16 logistic regression

models to evaluate the influence of age, gender, year,

and spatial location on CWD prevalence in mule deer

and found all to be important causes of heterogeneity in

disease prevalence. While susceptibility to CWD infec-

tion is similar between genders and across age classes

(see references in Miller and Conner 2005), observed

prevalence was highest in mid-aged males and increased

over time within local deer populations. The analysis by

Miller and Conner (2005) did not differentiate between

uncertainties in the process model vs. uncertainties due

to the sampling protocol, as they assumed CWD

detection and prevalence to be equal. If not completely

valid, this key assumption may bias Miller and Conner’s

(2005) age and gender structured results. In their

conclusions, Miller and Conner (2005) proposed a

framework for local-scale, predominantly independent,

CWD epidemics within the ‘‘endemic CWD’’ range.

They hypothesized that male deer are responsible for

spreading the disease among the relatively isolated

matrilineal clans, resulting in spatial heterogeneity of

local CWD introductions and variable prevalence rates

that are dependent on time since introduction. However,

a paucity of data on disease prevalence sampled (with

error) over multiple years from an age-structured

population make this a difficult hypothesis to test.

The collection of CWD models published in recent

years, regardless of statistical philosophy, have generally

employed approaches that compare multiple alternative

or nested models to explore CWD dynamics, rather than

rely on more traditional hypothesis testing procedures

(sensu Hobbs and Hilborn 2005, Plowright et al. 2008)

and there is a logical progression of models, inference,

and interpretation that runs throughout much of this

work (e.g., Miller and Conner 2005, Miller et al. 2006,

Osnas et al. 2009, Song and Lawson 2009, Heisey et al.

2010). A majority of recent models use a hierarchical

Bayesian framework, which can coherently estimate the

latent spatiotemporal transmission process and account

for uncertainty in the data generating process (Clark

2005, Cressie et al. 2009). Regardless of the modeling

framework, most analyses consistently support in-

creased infection among male deer and increasing risk

of infection with age after two years (Farnsworth et al.

2006, Grear et al. 2006, Osnas et al. 2009, Song and

Lawson 2009). Several analyses also found that observed

prevalence declined in the oldest age classes (Miller and

Conner 2005, Osnas et al. 2009). Furthermore, studies

consistently report that disease prevalence is spatially

heterogeneous (Osnas et al. 2009, Song and Lawson

2009) and may be influenced by habitat characteristics

(Farnsworth et al. 2005, Joly et al. 2006), time since

introduction (Miller and Conner 2005, Wasserberg et al.

2009), differences in demography (Miller and Conner

2005, Osnas et al. 2009) and localized ‘‘hotspots’’ of high

transmission (Farnsworth et al. 2006). In 2006, Farns-

worth and colleagues used a Bayesian hierarchical model

to link CWD prevalence among mule deer in Colorado

to known scales of mule deer movement. In the ongoing

effort to understand how CWD transmission leads to

the observed spatial heterogeneity in disease prevalence,

Farnsworth et al. (2006) looked to define the scale at

which deer interactions (which occur at known and

divergent spatial scales) were most likely to generate the

observed patterns of prevalence. In addition to deer age

and gender effects, Farnsworth et al. (2006) identified

local-scale contacts, particularly those that occur during

the winter season, as a key generating force behind the
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observed spatial patterns of CWD prevalence among

Colorado’s mule deer.

Of three CWD modeling papers published in 2009, all

used some subset of the Wisconsin white-tailed deer

harvest data detailed in Heisey et al. (2010), and two
used Bayesian hierarchical modeling frameworks to

quantify spatiotemporal patterns in disease prevalence

(Osnas et al. 2009, Song and Lawson 2009). CWD has

been monitored in Wisconsin since 2002, largely through

hunter-harvested samples. Despite aggressive manage-
ment of deer densities, disease prevalence has increased

(especially in recent years) and spread beyond the initial

detection zone (data from Wisconsin Department of

Natural Resources, available online).2 Following pat-

terns seen in Colorado’s mule deer, observed CWD
prevalence in white-tailed deer in Wisconsin is higher in

males (10% vs. 4–5% in females), spatially variable, and

may decline in older age classes (e.g., Grear et al. 2006,

Osnas et al. 2009). Understanding the causes of the

spatial heterogeneity and determining whether or not
the epidemic is increasing over time remain important

considerations.

Wasserberg et al. (2009) used a deterministic multistate

matrix model to explicitly evaluate the consequences of

density- and frequency-dependent transmission assump-

tions on estimates of time since introduction, epidemic
duration, and management outcomes. The model char-

acterizes four infection stages for 20 age classes and two

genders, for a 160-by-160-cell transition matrix and is

nonspatial but does incorporate seasonality. The authors

fit the Wisconsin data to density- and frequency-
dependent models using maximum likelihood techniques

with a somewhat indecisive outcome. Although the AIC

value was slightly lower for the frequency-dependent

model, both transmission models fit to a subset of the
data predicted 2006 prevalence data equally well.

Furthermore, while the estimate for time since introduc-

tion using the frequency-dependent model was 188 years,

the density-dependent transmission model estimated a

more realistic 36 years. The authors also compared the
simulated effects of culling on frequency- and density-

dependent disease progression and reaffirmed that

culling is only effective at managing CWD if transmis-

sion is density-dependent. Wasserberg et al. (2009) argue

that management (i.e., culling) experiments could be
used to identify the driving mode of transmission:

density-dependent transmission will eventually produce

an epidemic wave, while frequency-dependent transmis-

sion will result in asymptotic epidemic growth.

The hierarchical Bayesian model published by Osnas

et al. (2009) defines a Bernoulli observation model where
the probability of CWD infection increases with age

according to a cumulative hazard function informed by

the age and gender of the deer sampled. They used a

model selection criterion similar to AIC (DIC; Spiegel-

halter et al. 2002) to select a fully saturated model with

age, age2, gender, a latent spatial effect, and a spatially

varying linear time trend. Osnas et al. (2009) again

confirmed that males are more likely to be positive for

CWD and that risk of infection, especially in males,

increases with age and decreases among older deer. They

concluded that the observed spatial heterogeneity in

CWD prevalence is due to sampling variation and deer

demography and not to spatial differences (i.e., hot-

spots) in transmission. Still, the analysis of Osnas et al.

(2009) was insufficient to prove or disprove the notion

that patterns of high prevalence might result from

differences in epidemic growth rates or variable timing

of local introductions. Osnas et al. (2009) also stressed

that the temporal duration of the available data was

insufficient to fully deduce spatiotemporal CWD epi-

demic processes.

Song and Lawson (2009) also used data from deer

harvests in Wisconsin to fit a hierarchical Bayesian

survival model where risk of infection is a power

function of deer age. Unlike the models discussed above,

their model is explicitly structured to account for the

fact that harvest age does not equal age of infection and

that the data are censored depending on infection status.

Additionally, the authors explored the degree of

infectious clustering in space and time through covar-

iates representing (spatial and temporal) distances

between harvested deer and all other CWD positive

deer sampled. Like the other studies, the authors

concluded that males are at higher risk of infection,

although they did not find evidence to support changing

CWD prevalence with age. This may be due to the

absence of an age–sex interaction (sensu Osnas et al.

2009). Covariates defining temporal and spatial clusters

of CWD infections were also significant. Unfortunately,

the interpretation of what causes the spatial, temporal,

and spatiotemporal clustering of CWD infected deer

remains unclear. Indeed, the authors noted that a

negative temporal clustering effect may suggest increas-

ing temporal trend in infection hazard (i.e., a growing

epidemic) but could also result from insufficient

accommodation of the difference between harvest age

and actual infection age.

So, by the end of 2009, we knew that male deer over 2

years old are roughly twice as likely to be CWD positive

than females and that infection risk increases initially

with age but then is reduced in both genders among the

oldest age classes. It remains unclear how important

CWD-related mortality is to the non-linear relationship

between prevalence and deer age (Osnas et al. 2009).

Additionally, spatial structure in CWD prevalence is

evident, although conclusions are mixed as to the

relative importance of time since CWD introduction,

environmental characteristics, and deer demography.

Likewise, the importance of the censoring mechanism in

the hunted deer samples remains an open question. The

censored survival analysis by Song and Lawson (2009)

performed only slightly better by DIC comparison than

2 hhttp://dnr.wi.gov/org/land/wildlife/whealth/issues/
CWD/maps.htmi
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a simpler logistic regression. All of this sets the stage for

the presentation by Heisey et al. (2010), which describes

a complicated model that attempts to coherently

accommodate many of the shortcomings in each of its

predecessors.

The research presented in Heisey et al. (2010) further

examines the spatial heterogeneity in CWD prevalence

and specifically asks: (1) Do areas of high CWD

prevalence reflect high transmission rates? and (2) Are

there hotspots in local CWD cases? If high prevalence is

not the result of epidemic growth, the authors consider

the alternative explanation that heterogeneous infection

prevalence results from differences in local introductions

(e.g., Miller and Conner 2005). A key advance in the

analysis presented by Heisey et al. (2010) is simultaneous

consideration of several issues important in disease

ecology within a common model framework. They detail

a logical path through some complicated model com-

ponents that accommodate the data censoring mecha-

nism, address the challenge in discerning age vs. time

influences when interpreting temporal changes (in

transmission) in an age-structured host population,

and simultaneously, examine potential causes of the

spatial patterns in disease prevalence. The authors are

careful to point out that their analysis models the force-

of-infection and is not a model of the time of initial

infection. This is important to the interpretation of their

results. The specific model components include a

hierarchical Bayesian survival or hazard model for

cumulative risk of infection, a smoothing function to

model the dependence structure between deer age and

time, and a spatial component. The authors perform

detailed model selection on each component. They

acknowledge two primary assumptions in their model

structure: (1) that time of death is not associated with

infection status and, (2) that conditional on gender, age,

and location, deer samples are independent of CWD

infection status. Both assumptions are likely violated (by

their admission). Whether or not hunters are more or

less likely to shoot CWD positive deer and whether or

not that changes with time remains unclear (but see

Grear et al. 2006)—and is potentially a source of bias in

this and all previous models. The model presented by

Heisey et al. (2010) certainly advances understanding of

the spatiotemporal structure in CWD prevalence beyond

the capacity of the logistic regression model in Miller

and Conner (2005), but both models are fundamentally

dependent on the information available in the fitted

data.

The model by Heisey et al. (2010) supports Miller and

Conner’s (2005) scenario of temporally distinct local

introductions and does not support differences in the

rate of increase of CWD prevalence or the existence of

spatial ‘‘hotspots.’’ Furthermore, Heisey et al. (2010)

found that while CWD infection rates are higher in male

deer, prevalence is more spatially clustered in female

deer. Their results further support the idea that both

density-dependent and density-independent mechanisms

are important in CWD transmission. Is this enough new

information to warrant such an extensive model? Heisey

et al.’s (2010) model requires a lot of data and some

advanced statistical savvy. And like all models, this one

is still vulnerable to critical assumptions and data

limitations. Still, CWD is a complicated emergent

system and simple models are unlikely to render

accurate characterization of the spatiotemporal trans-

mission process. In light of the complexities of the

system and the shortcomings of preceding models, the

complex and thoughtful approach by Heisey et al. (2010)

seems warranted. Their model is not perfect but it is

clearly structured to address limitations in previous

models. Heisey et al. (2010) articulated a coherent

modeling framework that addresses an important

question, with full acknowledgement of assumptions

made. It then becomes the purview of the next user to

either build up from this framework or start anew to test

other assumptions and hypotheses.

Heisey et al. (2010) characterize a gender-specific

spatial structure in CWD prevalence that could inform

more effective strategies for managing the CWD

epidemic. But as they admit, defining gender-specific

culling perimeters around CWD positive samples might

be beyond the practical capacity of management

resources. Are the efforts of designing models to more

accurately characterize our understanding of processes

and data mechanisms wasted if they cannot be used to

manage the epidemic? The models mentioned here are

undoubtedly important contributions to a growing body

of research being used to understand and manage CWD.

However, the very thoroughness of Heisey et al.’s (2010)

approach raises important questions regarding the role

of big statistical models in advancing ecological under-

standing and when necessary, guiding action. The

question of how big or complex a model needs to be

has been and will continue to be a popular target for

critique, but most will agree that the answer depends on

the research goals. Is the model designed to generate

inference about key process or disturbance parameters?

Is it important to test assumptions (Schauber and Woolf

2003, Wasserberg et al. 2009), generate forecasts (Clark

et al. 2001), or evaluate management actions (Keeling et

al. 2003, Lipsitch et al. 2003, Tildesley et al. 2006)?

Models (statistical or mathematical) should be precisely

as complex as necessary to address the relevant research

questions and goals. Still, every model has key

assumptions and limitations, regardless of its complex-

ity. Standardizing protocols for testing assumptions,

representing limitations, and validating model output in

contemporary ecological analyses remains a critical task

for the research community (Craigmile et al. 2009).
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