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Spatial and temporal heterogeneity can make ecological systems hard to understand
and model. We propose a simple classification of the types of spatial and temporal
complexity contained in ecological systems, and describe the kinds of data and
models needed to account for each. We classify ecological systems by the presence of
heterogeneity at the scale of study, the nature of their dynamics (linear vs non-linear),
attributes of the patches that constitute the heterogeneous system, and the presence
and directionality of interactions among patches. Heterogeneity in space and time are
nearly equivalent in our framework. Advanced modeling skills are necessary to create
appropriate mathematical representations of highly complex systems (with non-linear
dynamics, patches with more than one kind of important attribute, or interactive
patches). Simple models can work well when the scale of heterogeneity is much finer
than the scale of observation, when low precision is sufficient, when patches interact
only weakly, or when empirical approaches are used to fit functions and constants.
Having a way to classify complexity in space and time in ecological systems should
help ecologists to select modeling approaches consistent with their abilities and goals.
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On a popular children’s TV show, Bill Nye (The Science
Guy) dumps a burger, fries, a coke, and a milkshake
into a blender, hits the “puree” button, then drinks the
resulting soup (ugh, gross). Although the soup that
comes out of the blender is in some sense exactly the
same as the food that went in, it is clear from the
comments of children that they think the blending
process produced fundamental, important changes in
the food. Historically, ecologists have likewise used
conceptual and mathematical blenders to reduce the
spatial and temporal heterogeneity in ecological systems
by averaging over various scales of time and space.
There are several reasons why ecologists like to hit the
“puree” button: (1) most ecologists probably find it
easier to conceptualize relatively simple systems; (2)
mathematical models of homogeneous systems generally
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are much more tractable than those of heterogeneous
systems; (3) it is simpler to relate a small-scale experi-
ment to a homogeneous system than to a heterogencous
system; (4) our measuring instruments often cannot
resolve heterogeneity, especially at time and space scales
far from those of human perception; (5) ecologists have
had some success with simple, averaged models.

In what circumstances are “pureed” ecological mod-
els that are averaged over space or time likely to
adequately represent nature, which is heterogeneous
over space and time? When are models that explicitly
consider spatial and temporal patchiness likely to be
needed? What kind of detail must these models incorpo-
rate? Here, we use a simple classification of spatial and
temporal complexity in ecosystems to answer these
questions.
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Spatial complexity in ecosystems

Ecosystems may possess several more or less distinct
kinds of spatial complexity. We briefly discuss the kinds
of data or models that might be needed to capture each
kind of spatial complexity. Of course, spatial complex-
ity possessed by a system depends on the question or
process being considered — a system that is spatially
complex with respect to one process may be homoge-
neous with respect to another. For example, the layers
of a stratified lake may have different temperatures but
not calcium concentrations. Further, real ecological
systems usually contain a mixture of several kinds of
spatial complexity rather than purely expressing of one
kind of complexity. Therefore, we do not expect real
ecological systems to map one-to-one onto the model
systems we describe.

Homogeneous systems

In the simplest case, the system is spatially homoge-
neous (Fig. 1). Obviously, models of such systems need
not include any spatial information; a measurement of
variables at a single point in the system is an adequate
description of the system. While it might seem that few
ecological systems fall into this category, it is not
necessary for a system to be literally homogeneous for
it to be treated as homogeneous. All that is required is
that controlling and response variables not vary at
spatial scales at or coarser than the scale (grain size) of
measurement or analysis. If the scale of variation is
much finer than the scale of measurement, then the
system is practically homogeneous. For example, if
primary production is studied at a scale of 1 m?, then a
well fertilized, level lawn may be nearly homogeneous,
and if production is studied at a scale of 1 ha, some
forests may be nearly homogeneous over large areas. If

production is studied at fine scales, both systems are
heterogeneous.

Heterogeneous systems with non-interacting
patches and linear dynamics

Slightly more complex is a system containing multiple
patches that do not interact with one another and
which is governed by linear processes (Fig. 2). As long
as all controlling functions are linear and (if multiple)
do not interact with one another, the heterogeneity in
this system can be dealt with satisfactorily by using a
model based on the mean state of the variables, which
gives the same numerical result as a spatially explicit
model. Ecological systems probably aren’t literally lin-
ear very often, but may be treated as linear in special
cases. Even highly non-linear functions may be treated
as linear over short ranges of the controlling variables.
As long as controlling variables do not vary over wide
ranges in the area of study, then the governing equa-
tions may be treated as linear, and mean values of the
controlling variables will suffice to model the behavior
of the system. If controlling variables vary over wider
ranges or interact with one another, then non-linearities
will come into play, and a model based on the mean
values of variables will fail.

Heterogeneous systems with non-interacting
patches and non-linear dynamics

Next, we may consider a system of multiple, non-
interacting patches, but which is governed by non-
linear dynamics (Fig. 3). A process with non-linear
dynamics will produce different results in a heteroge-
neous system than in a homogeneous system with the
same average characteristics. Consider a simple exam-

Fig. 1. A homogeneous system.
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Fig. 2. A heterogeneous system with no interactions between
patches, in which all governing functions are linear.
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Fig. 3. A heterogeneous system with no interactions between
patches, in which governing functions are non-linear.

ple in which the patches shown in Fig. 3 represent areas
of shallow water (say 1 m deep) and deep water (say 15
m deep) in a lake. Light penetration through water is
non-linear (I, =I,e "% where I, and I, are the light
levels at depth z and the water’s surface, respectively,
and m is the extinction coefficient; Wetzel 2001), so the
average level of light reaching the sediments of this
peculiar lake is not the same as the level of light that
reaches the sediments at its average depth. (Suppose
I,=100 and n = 0.5/m. The average light level at the
bottom of the lake is 0.5 x 100e=%°*!+0.5 x
100e — %315 =30, while the light level at the average
depth is 100e ~03(0-3>1+0.5x15 =1 &) T ikewise, the
photosynthesis—irradiance curve for aquatic vegetation
is non-linear (Harley and Findlay 1994), so that the
average photosynthetic rate of plants in the lake is not
the same as the photosynthetic rate at the average light
intensity reaching the lake bottom. An estimate of the
photosynthesis of submersed aquatic vegetation based
on the light penetration at the average depth of the lake
would be grossly incorrect (in fact, it would be zero).
Instead, to adequately estimate photosynthesis of sub-
mersed aquatic plants, one needs to know the distribu-
tion of water depths (not just the average water depth),
as well as the shapes of the light extinction and P-I
curves. The heterogeneity of water depths is thus of
central importance to the correct solution of the prob-
lem. There are many other ecological examples. In
particular, non-linearities arise very commonly in eco-
logical systems in cases where the response variable is
controlled by two or more governing variables that
interact.

Generally, a model to predict the behavior of a
system with noninteracting patches and non-linear dy-
namics must include information on the frequency dis-
tributions of variables, rather than just the mean value
of variables (cf. King’s 1991 “extrapolation by expected
value™). If multiple independent variables jointly gov-
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ern the process under study, the model will need infor-
mation on the joint frequency distributions of these
variables. Such data may be simple to collect (a bathy-
metric curve for a lake) or require great effort and
expense (especially where the joint distribution of two
or more variables is required). As non-linearities are
very common in ecological relationships (e.g. light pen-
etration, foraging behavior, nutrient uptake, interactive
independent variables), many ecological problems will
not be amenable to homogeneous models. Presumably,
the more numerous the non-linearities involved in an
ecological process and more non-linear they are, the
more likely that a homogeneous model will fail.

Heterogeneous systems with non-interacting
patches that have different attributes

Most often, patches are classified on the basis of a
single attribute (e.g. vegetation type, soil type, water
depth). However, a process under study may depend on
attributes of a patch other than the one used for patch
classification (Fig. 4). Probably the most obvious exam-
ple is patch size. The suitability of a habitat for an
organism may well depend on its size as well as its
identity. For instance, if the gray patches in Fig. 4 are
construed as oceanic islands, only the largest islands
may be able to sustain viable populations of a species.
Allan et al. (2003) provided an interesting example of
size-dependence, in which the risk of contracting Lyme
disease in a mixed suburban landscape was shown to be
a strong function of woodlot size. Lyme disease risk
could not be adequately predicted by knowing the
amount of forest cover, but required knowledge of
patch size distribution. Other attributes of a patch (e.g.
shape, orientation) may likewise affect its ecological
performance (Rodenhouse et al. 1997).

Although we define this category to contain only
non-interactive patches, we note that apparent at-
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Fig. 4. A heterogeneous system with no interactions between
patches, in which the function of patches is size-dependent.
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tribute-dependence may in fact be caused by edge ef-
fects and other patch-matrix interactions. Nevertheless,
such systems may successfully be modeled empirically
as non-interactive, attribute-dependent systems.

Here, neither the mean value nor the frequency dis-
tribution of variables will be sufficient to predict the
overall behavior of the system. Instead, the model will
need to include information on the frequency of
patches with different attributes (e.g. the frequency of
patches of different sizes or shapes), as well as the
frequency of different patch types in the system.

Attribute-dependence appears to be common in ecol-
ogy. Although the solution for dealing with attribute-
dependence is conceptually straightforward, it may be
difficult to recognize the existence of attribute-depen-
dence in the first place, and to collect enough data to
parameterize a model that includes attribute-
dependence.

Heterogeneous systems with non-directional
interactions among patches

If the patches interact, whether governing processes are
linear or non-linear, the spatial arrangement of patches
will affect the behavior of the overall system and must
generally be considered in a model (Fig. 5). Interactions
among patches are very common in ecological systems,
and can be highly varied. They may be though of as
falling into two indistinct classes (Fig. 6). First, a
process may occur only at or near boundaries between
two specific patch types (“boundary interactions”).
Many processes occur only at interfaces. For instance,
sulfide oxidation takes place where highly reduced habi-
tats contact oxygenated habitats. The amount of sulfide
oxidation that takes place in a landscape depends on
the amount of such boundaries, not just on the average
redox potential of the landscape, or even on the % of

Fig. 5. A heterogeneous system with non-directional interac-
tions between patches.
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Fig. 6. Two kinds of interactions between patches. A.
Boundary interactions: a process (shown in black) occurs only
along boundaries between two specific patch types. B. Remote
interactions: a process (shown in black) occurs where two
specific patch types are within some distance of one another.

the landscape that is at various redox states. Instead,
we need to know how often highly reduced patches are
adjacent to oxygenated patches. Many other activities
are concentrated along ecological boundaries (e.g.
cloudwater deposition of nutrients and pollutants,
Weathers et al. 1995; foraging activities of animals,
Manson et al. 2001). Second, a process may occur only
where two particular kinds of patches are within some
given distance of one another. An animal species may
require for its survival that two (or more) distinct
habitats (e.g. for breeding and for feeding) be close to
one another (e.g. within a home range or migration
route). Air pollution from a smelter may affect biologi-
cal communities and material cycling many km away
(Winterhalder 1996). These ‘“‘remote interactions” do
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not require that interacting patches be contiguous, only
that they are linked by some sort of ecologically impor-
tant vector (e.g. movement of water, air, organisms,
information).

If either boundary or remote interactions among
patches are significant, then a simplified model that fails
in some way to consider the spatial locations of patches
will not correctly predict the behavior of the system of
patches. Models of non-directionally interacting sys-
tems need not actually be spatially explicit, accounting
for the location of all patches, but can contain much
simpler information, such as the area of patch type B
that is within 1 km of patch type A.

Heterogeneous systems with directional
interactions among patches

If interactions (boundary or remote) between patches
are directional, the specific arrangement of patches with
respect to the direction of flow will affect the behavior
of the system, and will often need to be taken into
account by a model (Fig. 7). This might be called a
spatial priority effect, by analogy with temporal prior-
ity effects in succession (Alford and Wilbur 1985, Sta-
chowicz et al. 1999). Spatial priority effects are very
common in ecology. As an example, suppose we are
interested in the average concentration of nutrients in a
stream as a function of land use. We have two identical
watersheds, each of which has a sewage treatment plant
and a nutrient-absorbing wetland (Fig. 8). In one wa-
tershed, the sewage treatment plant is just downstream
of the wetland, so nutrient concentrations are high for
a long distance below the sewage treatment plant, and
average nutrient concentrations in the basin are high.
In the other, the sewage treatment plant is just up-
stream of the wetland, so that nutrient concentrations
are elevated for only a short reach of stream, and

Fig. 7. A heterogeneous system with directional interactions
between patches.
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Fig. 8. An example of a spatial priority effect. Diagram shows
two stream drainage networks in which a nutrient-absorbing
wetland (W) and a sewage treatment plant (STP) occur in
different configurations.

average nutrient concentrations in the basin are low.
The only way to correctly estimate nutrient concentra-
tions in these two systems is to explicitly consider the
relative locations of these two important elements of
the landscape. Spatial priority effects will often demand
that spatial heterogeneity be incorporated into models.
Specifically, the model will need to include information
on the interaction between the flow field (direction,
speed) and the patch structure of the landscape.

We note that the degree to which landscapes may be
considered as interactive or non-interactive may depend

— =

Grain C|

Grain B

Grain A

Fig. 9. The importance of interactions depends on the grain
size of the patches. Consider three sizes of patches (A, B, and
C) all subjected to the same interaction vector (arrow). Be-
cause the vector is large compared to the grain size of B and
C, models of landscapes of this grain size probably need to be
modeled as interactive. The same vector is small compared to
Grain A, so a model of a landscape at this grain size may be
modeled as non-interactive.
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on the grain size of the landscape (Fig. 9). The vectors
that link patches in a landscape (whether by boundary
or remote interactions) have both a speed (e.g. m/yr)
and an amount (e.g. kg/m>-yr) at which material, or-
ganisms, or information is moved from one patch to
another. Both the speed and the amount of a vector
must be large in some sense if two patches are consid-
ered to interact. The speed of a vector scales with the
grain size of the landscape, so that the same vector
reaches all parts of small patches, but only a small part
of large patches in a given time. Consequently, given an
interaction vector (e.g. movement of water downslope),
interactions are less likely to be important in landscapes
with large patches than in landscapes with small
patches. Consequently, it is likely that fine-grained
landscapes will have to be considered as interactive
more often than coarse-grained landscapes.

Spatially explicit response variables

Finally, an entirely different class of problems will
cause averaged models to fail: if the response variable
itself is spatially referenced, rather than being an aver-
age of conditions over some time or space. Thus, if the
response variable varies spatially, and we are interested
only in its value at one particular place, then an aver-
aged model will not produce satisfactory predictions,
even if it accurately predicts the average behavior of the
entire system. Turner et al. (2001) refer to this as the
‘scaling-down” problem, and note that it has no general
solutions. There are many ecological examples. For
instance, we may wish to predict the population density
of an endangered species at the site where a shopping
mall will be built. The fact that we have an averaged
model that perfectly predicts the average density of this
species in 100 km? blocks is of no use to us in predict-
ing the impact of the shopping mall.

Temporal complexity in ecosystems

Most ecological systems are heterogeneous in time as
well as space. Space and time are more or less substi-
tutable in many ecological situations. For example,
species may coexist if their resource use patterns are
separated in time or space (Giller 1984), and a foraging
model may stipulate that a foraging bird needs to find
suitable food within a certain distance or flight time of
a nest site. Chronosequences are sometimes substi-
tutable for long-term studies as a tool for investigating
succession and other ecological processes (Pickett
1989). Do our generalizations about spatial heterogene-
ity apply also to temporal heterogeneity?

First, it is worth considering how temporal variation
relates to the patch structure commonly used to de-
scribe spatial variation. Although temporal variation is
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most often conceptualized as continuous rather than
discrete, it is possible to use a discrete patch structure
to describe temporal variation. (We believe that the
choice of a continuous vs a discrete view of nature does
not affect any of the conclusions we reach about model
requirements for heterogeneous systems). “Patches” in
time are periods of time during which ecological condi-
tions differ from those in earlier or later times, a
definition that closely parallels common definitions of
spatial patches (Turner et al. 2001). The temporal
equivalents of spatial patch interactions are lags (Pen-
nington 1986, Crooks and Soulé 1999, Ernest et al.
2000) and legacies (Harding et al. 1998, Foster et al.
1998, Turner et al. 1998) — means by which events
occurring at one time may have effects at later times.
As is the case with spatial interactions, such interac-
tions may occur between adjacent times (boundary
effects) or between widely separated times (remote
effects).

Several of the spatial situations described in Fig 1-8
have direct temporal analogues. The first two cases of
linear systems without interactions (Fig. 1 and 2) apply
equally to temporal variation. As is the case with space,
few ecological systems are literally homogeneous tem-
porally or are controlled by temporally varying factors
with strictly linear effects. Nevertheless, systems may be
treated as temporally homogeneous if the time-scale
(period) of temporal variation is small compared to the
temporal grain size of the study. Likewise, temporally
varying controlling factors with non-linear effects may
be treated as linear if the study is restricted to a
sufficiently small range of variation in controlling
factors.

If ecological processes are controlled by non-linear
functions (Fig. 3), then models of temporally variable
systems must be based on frequency distributions of
variables rather than their mean values. Consider a
plant that requires a threshold number of growing
degree-days to flower. Knowing the mean temperature
over a period of time does not predict whether flower-
ing will occur. Instead, the frequency distribution of the
temperatures over a period of time is required.

Attribute-dependence (Fig. 4) may occur in tempo-
rally variable systems as well as in spatially variable
systems. A frost-sensitive plant requires an unbroken
block of frost-free weather to complete its life cycle. We
cannot think of any attributes of a temporal patch
other than its length that might be of ecological
importance.

Analogies between time and space are not exact for
interactive patches. Time is always directional — materi-
als, organisms, and information can move in only one
direction. Thus, the situation shown in Fig. 5 has no
temporal analogue. Directional spatial models (Fig. 7)
have clear temporal analogues; in fact, phenomena such
as pre-emption, inhibition, facilitation, and priority ef-
fects are well known in studies of succession and other
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temporal phenomena (Alford and Wilbur 1985, Glenn-
Lewin et al. 1992, Stachowicz et al. 1999). For instance,
in primary succession on a sand dune, if seeds sensitive
to desiccation arrive before there has been adequate
accumulation of soil organic matter to retain water,
they will not germinate successfully. If the sequence of
events is reversed, with organic matter accumulating
before the seeds arrive, germination may be successful.

As is the case with spatially referenced response
variables, a temporally averaged model cannot accu-
rately predict the value of a particular point in time (the
“scaling-down” problem. For example, suppose we
have a model that perfectly predicts the long-term
average fish biomass in a lake as a function of averaged
land cover in the watershed. Such a model would not
necessarily be good at predicting fish biomass at any
particular time, because of the considerable temporal
variability in fish populations and land cover.

In general, temporally explicit models may be easier
to handle than their spatially equivalent counterparts
because temporal sequences can be ordered in only one
way. Thus, temporal effects can be modeled with simple
recursive equations. The situation in space can be more
difficult because there are three dimensions in space,
each with two possible directions.

Joint spatial and temporal heterogeneity in
ecosystems

Up to this point, we have assumed that the ecological
systems being studied vary over either space or time,
but not both. Of course, many ecological systems are
heterogeneous in both space and time. Wildfires and
other disturbances typically affect only parts of the
landscape (Christensen et al. 1989, Foster et al. 1998),
and invasive species spread unevenly across heteroge-
neous landscapes (Buchan and Padilla 1999, Kraft and
Johnson 2000). Conceptually, treatment of joint spatial-
temporal variation is similar to treatment of spatial or
temporal heterogeneity, although models that incorpo-
rate joint spatial—temporal variation may be very cum-
bersome and demanding in practice.

If the system is homogeneous in both space and time,
then it is trivially true that a successful model can be
based on measurements taken at a single point in space
and time. If the system varies over space and time, but
the patches do not interact and governing functions are
all linear, then a model based on the average values of
variables will suffice. In cases where the patches are
non-interactive over space and time, but governing
functions are non-linear, then the model must include
the joint space-time distribution of all variables in-
volved in significantly nonlinear functions. This require-
ment may greatly complicate attempts to evaluate
models of systems that are heterogeneous in both space
and time.
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As in the case of spatial or temporal variation,
models of systems in which patches interact signifi-
cantly over space or time may also be complicated to
evaluate. If patches interact across space but not time,
then the model must be spatially explicit at every time
for which the model must be evaluated. If patches are
interactive across time (i.e. the system has legacies) but
not space, then the model must be temporally explicit
for all points in space where the model must be evalu-
ated. Finally, if patches interact across both space and
time, a spatially explicit model that includes informa-
tion at all times up to the present time is required.
Unfortunately, this last situation (a system where the
patches interact significantly across both space and
time) is often the best literal description of ecological
systems.

Why do simple models work at all?

Given that most ecological systems, processes, and
questions are subject to one or more of these problems,
we might conclude that complex, spatially and tempo-
rally explicit models are needed for nearly all ecological
phenomena. In light of this conclusion, the widespread
success of simple models in ecology (Peters 1986, Pace
2003) presents an apparent paradox. Why do simple
models work at all? We can think of three reasons why
simple models might be adequate to describe a complex
world.

Using coarse-grained studies

First, although all ecological systems are heterogeneous
at some scale, this heterogeneity may occur at much
smaller scales of time and space than the grain size of
the study. The choice of a coarse grain for the study
can improve the performance of simple, averaged mod-
els in several ways. Most obviously, it can make a
heterogeneous system practically homogeneous with re-
spect to the process under study. Even classically ho-
mogeneous systems like the pelagic zone and sandy
beaches have measurable heterogeneity that is impor-
tant at some scale (Lehman and Scavia 1982, McLach-
lan and Erasmus 1983). However, if the temporal and
spatial scale of the patches is fine compared to the
spatial and temporal grain size of the process being
studied, it may be permissible to ignore this patchiness
and treat the system as homogeneous, especially if
functions and constants are empirically fitted, rather
than being scaled-up from fine-grained studies of con-
trolling functions (see below). A good example is mod-
els of nutrient export from watersheds (Caraco and
Cole 1999), which ignore the fine-grained heterogeneity
of watershed soils that is undoubtedly important in
nutrient processing (Jacinthe et al. 1998).
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Further, because the speed of a vector scales with the
grain size of the landscape (Fig. 9), cross-boundary
fluxes may dominate the structure of a fine-grained
model but be safely ignored in a coarse-grained model
of the same landscape. Thus, coarse-grained models
may be fundamentally simpler in structure than fine-
grained models in cases where cross-boundary fluxes
occur.

Finally, if the grain size of the study is chosen to
correspond to the scale of some higher-level constraint,
then the internal dynamics of the heterogeneous system
may be irrelevant to its broad-scale behavior. Suppose
we are interested in primary production in a stratified
lake. If we take very fine-scale measurements (e.g.
minutes to hours), we probably would conclude that
primary production is controlled by light. Nevertheless,
at longer time-scales, we would find that primary pro-
duction over the summer stratified period (i.e. months)
is controlled by the amount of nutrients in the epil-
imnion at the onset of stratification. Stratification im-
poses a strong constraint on primary production at a
characteristic scale of several months. Including the
fine-scale heterogeneity in light could actually result in
a poorer model than basing a model on a coarse
temporal grain size that corresponds to the strong
constraint of stratification. In cases such as these, in-
cluding the fine-scale details of heterogeneity can actu-
ally degrade the performance of the model, as well as
making the model substantially more complicated.

Accepting approximate answers

Second, ecologists rarely require exact answers and may
achieve considerable insight from even approximate
answers. Even if factors such as non-linearities, at-
tribute dependence, or patch interactivity produce a
modest amount of imprecision or bias in model results,
a simple homogeneous model may be acceptable to
ecologists. Ecological models with modest r* (e.g.
~ 0.5) often provide useful insights and are regarded as
successful, so considerable model imprecision may be
acceptable, particularly if bias is small. Thus, a simple
model may provide an acceptable answer at much
lower cost than a complex, spatially and temporally
explicit model.

Empirical fitting

Third, ecologists often use empirical or semi-empirical
approaches that allow for the introduction of empiri-
cally determined constants or functions. Empirical
fitting of models is an important way in which bias
between averaged models and spatially explicit models
can be eliminated. Suppose that two variables are actu-
ally related to one another as follows

OIKOS 102:3 (2003)

Y = f(X)

But instead of measuring X and Y at the fine spatial
and temporal scales at which X and Y really interact,
an ecologist measures coarse-scale averages X' and Y.
If f(X) is non-linear, then

Y =g(X) #f(X)

The practical consequence of this inequality is that even
if you knew the “true” relationship f(X) from con-
trolled laboratory measurements or from theory, you
would not be able generally to predict the behavior of
the system from coarse-scale averaged measurements.
However, if the internal structures (e.g. distribution of
patch sizes, governing functional relationships, patch
geometry) are similar across systems being compared, it
is possible to derive g(X’) empirically, and to proceed
without explicitly considering heterogeneity. Of course,
if these internal structure differ across systems or over
time, an empirically derived g(X’) will not apply per-
fectly to all systems under study.

As an example, suppose we are trying to predict
denitrification rates in 1 m? plots from coarse-scale
measurements of redox potential. Further suppose that
we know from careful lab measurements that denitrifi-
cation actually takes place only at redox potentials
between a and b mV. Soils are very heterogeneous, and
the redox potential measured by a large electrode does
not adequately reflect, say, the redox potential inside
soil aggregates. It is quite possible that none of our
coarse-scale measurements of redox potential are be-
tween a and b mV, leading to the potentially erroneous
conclusion that denitrification does not occur in the
plots. In fact, denitrification occurs inside some of the
soil aggregates. An empirical relationship might be
established between coarse-scale redox potential and
measured denitrification rates, which could hold over
sites with a similar particle size distribution, moisture
content, and organic matter content as the plots, and
which could predict that denitrification occurs at redox
potentials between ¢ and d mV, where ¢ and d are much
higher than a and b. The widespread use of empirical or
semi-empirical models in ecology probably has been an
important reason why models that ignore heterogeneity
have achieved some success.

Conclusions

Ecological systems are spatially and temporally com-
plex. This complexity may arise from several more or
less distinct causes (Fig. 1-5, 7). Despite the ubiquity
and importance of spatial and temporal heterogeneity
in ecological systems, it is not always necessary to
include such heterogeneity in models of these systems.
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The adequacy of simple models to represent spatially
and temporally complex ecological systems depends on:

o The mathematical form of key dynamic relationships
in the system

e The degree to which the function of patches depends
on the size or other attributes of the patches

e The strength of interaction among patches

e The directionality of interaction among patches

e The spatial and temporal scale of the question being
asked, relative to the scales of spatial and temporal
heterogeneity and controlling processes

e The level of accuracy required of the model

e The use of empirically fitted functions or constants
in the model
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