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Abstract. Predicting algal blooms has become a priority for municipalities, businesses, and citizens. 

Remote sensing offers solutions to the spatial and temporal challenges facing existing lake monitoring 

programs that rely primarily on high-investment in situ measurements. Techniques to remotely measure 

chlorophyll-a (chl-a) as a proxy for algal biomass have been limited to large water bodies in particular 

seasons and chl-a ranges. Thus, a first step toward prediction of algal blooms is generating regionally 

robust algorithms using in-situ and remote sensing data. This study explores the relationship between in-

lake measured chl-a data in Maine and New Hampshire and remotely-sensed chl-a retrieval algorithm 

outputs. Landsat 8 images were obtained and then required atmospheric and radiometric corrections. Six 

existing algorithms were tested on a regional scale on nine scenes from 2013-2015 covering 169 lakes. 

Landsat 8’s Bands 2-4 proved most useful for correlation with chl-a, and for late-summer scenes, existing 

algorithms accounted for nearly 90% of the variation in in-situ measurements. Imposing a chl-a floor and 

talking only samples from within a day of the satellite improved this relationship so that over 98% of 

variation was explained. A significant effect of the time of year on several indices was demonstrated. A 

sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite 

image increased noise in the models. The quantification of these confounding influences points to 

potential solutions such as incorporating remotely sensed water temperature into models as a proxy for 

seasonal effects. These results suggest that remote sensing could be an effective and accessible tool for 

monitoring programs at the regional scale. 

 

INTRODUCTION 

 

Scientists and citizens alike are becoming increasing interested in monitoring and predicting changes in 

global water quality. Freshwater systems in particular provide a wide range of ecosystem services, from 

habitats to recreation to irrigation. Environmental stressors related to climate and land-use change are 

threatening many of these services, leading public and private organizations to rejuvenate or begin 

monitoring strategies. Many such efforts have begun in response to anthropogenic eutrophication from 

increasing nutrient inputs and higher water temperatures that are changing freshwater biota community 

dynamics (Dörnhöfer and Oppelt 2016). The effects of eutrophication can range from aesthetic 

annoyances like odor and color to toxic blooms that decimate wildlife populations and make the water 

unsuitable to drink (Shen et al. 2012). Monitoring programs have thus aimed to predict phytoplankton 

population change with the hope of preventing these problematic situations.    

 

While in situ and primarily summer-time measurements have long been the basis of these monitoring 

programs, these collection methods are limited because of the high demands for time and labor and the 

cost of data collection. An alternative, or complement, to this cost-intensive approach uses remote sensing 

technology, which aims to use satellite imagery to derive water quality parameters. Remote sensing has 

shown promise for supplementing or replacing field data, but limited spatial resolution and optically 

complex inland waters have posed challenges to progress (Palmer et al. 2015).
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Recent advances in the field of remote sensing have the potential to overcome some of these challenges. 

Landsat 8 (L8) is the most recent addition to the Landsat series of satellites, which have provided a 

publically accessible record of over four million images dating back to 1972. L8 features eight times 

better signal to noise ratio than previous iterations, a faster 12-bit quantization processing speed, and two 

new wavelengths (Roy et al. 2014). Although the 16-day repeat cycle of the satellite results in temporal 

limitations, the 30m x 30m spatial resolution has made L8 one of the most promising versions of remote 

sensing technology yet for inland water monitoring (Gerace et al. 2013, Feyisa et al. 2014, Concha and 

Schott 2015a, Andrzej Urbanski et al. 2016, Beck et al. 2016). The real practicality of Landsat 8 satellite 

data, though, remains to be fully tested.  

  

The application of remote sensing to monitoring water quality is limited to measuring spectrally active 

water constituents since these satellites can only produce data about absorbance and reflectance of 

surfaces. Luckily, the issue of eutrophication of lakes has potential to be investigated with remote sensing 

due to the fact that chlorophyll a (chl-a) is a spectrally active compound in phytoplankton. Chl-a can be 

used as a proxy for phytoplankton biomass, therefore serving as an indicator of lake productivity (Beck et 

al. 2016). Many different algorithms have been developed to estimate chl-a values from reflectance 

outputs of specific bands from satellite data. Robust relationships have been developed in many cases 

(Duan et al. 2007, Bresciani et al. 2011, Keith et al. 2012, Tebbs et al. 2013) between measured and 

satellite-retrieved chl-a values, but their application is not necessarily accurate outside of the original area 

of study, often just a single water body.  

  

Lakes in the New England region have long been monitored using traditional in situ methods. The 

Volunteer Lake Assessment Program (VLAP) has used volunteer-driven lake sampling sponsored by the 

Department of Environmental Services to monitor New Hampshire lakes since 1985. The organization is 

currently collecting monthly water samples and compiling annual reports on 176 different lakes in the 

state (New Hampshire DES 2015). Likewise, the Volunteer Lake Monitoring Program in Maine, with the 

help of over 1,200 active volunteers, has been monitoring more than 500 lakes since 1971. Of primary 

concern to the managers, citizens, and scientists involved is eutrophication, which is expected to be a 

growing problem in the region due to nutrient loading from land-use and climate change (Moore et al. 

2014). Studies on lakes in the region have largely been limited to in situ case studies on specific lakes 

(Davis et al. 2006, Carey et al. 2009), making remote sensing technology for monitoring lakes a very 

promising too.   

 

Monitoring small oligotrophic lakes remotely was suggested as early as 1989 (Vertucci and Likens 1989), 

but limitations on the resolution and accuracy of remote sensing technology precluded any further action 

at the time. In New Hampshire, early Landsat data were used to examine the relationship between satellite 

reflectance and lake transparency, but were limited by the band availability of Landsat (Schloss et al. 

2002). More recent work has identified remote sensing of chl-a as a priority, but has used hyperspectral 

imaging from boats or aircraft rather than available satellite imagery (Bradt 2010, Keith et al. 2012). 

Urbanski et al. (2016) provided an initial assessment of L8’s suitability for regional lake quality 

assessment, finding that remote sensing for trophic state assessment of lakes in Poland was possible, but 

often required a specific formula for each specific satellite scene.   

 

This investigation seeks to utilize the currently available in situ and satellite data in the region to assess 

the strength of existing chl-a retrieval algorithms and their potential as predictive tools in over 150 small 

lakes. Such a study will contribute to improving the existing algorithms for water quality predictions and 

identify the existing benefits of using this kind of technology. We primarily hope to suggest to monitoring 

programs and remote sensing specialists ways to improve the applicability of remote sensing to the field 

of freshwater ecology. 
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METHODS 

 

1. Satellite Data 

 

Five Landsat images over Maine (Path 12 Row 29) and seven over New Hampshire (Path 13 Row 30) 

were acquired from USGS EarthExplorer (https://earthexplorer.usgs.gov/) (Table 1, Figure 1). The Level 

1 GeoTIFF Data Products from the Landsat 8 OLI_TIRS sensor were downloaded for each image, except 

for the August 26, 2000 image which instead came from Landsat 7’s Level 1 Product to provide a 

comparison between Landsat iterations. The images were processed using ENVI software. For each of 

Landsat 8’s eleven different bandwidths (Appendix) Reflective Radiometric Calibration was performed to 

convert radiance – the surface brightness measured directly by the satellite – to the unit-less surface 

reflectance using metadata about the acquisition time and sun elevation when the image was taken (Harris 

Geospatial). A simple Dark Object Subtraction (DOS) was performed to minimize the effects of 

atmospheric haze (Giardino et al. 2001, Andrzej Urbanski et al. 2016).  

 

2. In Situ Data 

 

In situ chl-a data were obtained for New Hampshire from the Department of Environmental Service’s 

Volunteer Lake Assessment Program (VLAP) database and for Maine from the Volunteer Lake 

Monitoring Program (VLMP) (Figure 1).  

 

The 265 different chl-a samples in Maine were taken from 145 unique sampling points from 133 different 

lakes. Two scenes had on average 15 associated sampling points in common, and no two images shared 

more than 23 sampling points. In New Hampshire, the 90 chl-a samples were taken from 61 unique lakes 

that each had just one sampling spot.  The scenes had on average below three sample sites in common and 

no two images shared more than six corresponding sampling points.  

 

Chl-a measurements taken from lakes within the satellite image and sampled within four days for New 

Hampshire images and five days for Maine images were recorded (Figure 1). There was not a 

standardized procedure for chl-a measurement within either of the two programs, and samples were taken 

from depths ranging from 0.5m-10m depending on the lake (mainevlmp.org and 

des.nh.gov/organization/divisions/water/wmb/vlap/). Of the 265 in situ samples from the five Maine 

images, 87% were below 10ppb. Five of the six chl-a values above 30ppb were sampled in the two late 

August samples. These points were excluded from the regression analyses in order to minimize the effect 

of just a few points on the strength of the correlations. In New Hampshire, only four of the 90 samples 

had chl-a values above 10ppb, and none were above 13ppb (Table 1). 

 

3. Assessing Algorithm Performance 

 

Six existing chl-a retrieval algorithms were chosen to incorporate several different potentially 

ecologically-significant bandwidths (Table 2). The Surface Algal Bloom Index (SABI) and Normalized 

Difference Vegetation Index (NDVI) were developed for satellites with narrower bandwidths and were 

adapted to fit the wider bands of Landsat 8. The 3BDA (KIVU) and 2BDA algorithms were developed 

with Landsat 7TM bands, so the band math presented here substituted the corresponding Landsat 8 bands 

(Appendix). Kab1 and Kab 2 were best-fit algorithms built specifically for low-chl-a coastal settings, and 

were include to assess how well a highly specific algorithm might translate to other regions of study.  

 

The VLAP and VLMP provided exact coordinates for where each in situ sample was taken, and ENVI 

Geospatial Software was used to gather the reflectance output values for each Landsat 8 band at each site. 

The “Compute Spatial Statistics” function was used to average the reflectance values over a 3x3 pixel 

grid surrounding the sampling point to account for any variability from the local mean that might exist 
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within just one 30m x 30m pixel. The individual band reflectances could then be combined to find the 

output in remote-sensing reflectance (Rrs) of each algorithm at each sampling location.  

 

4. Sensitivity Analyses  

 

Time Window. The nine satellite images from Table 1 were used for an analysis of the importance of the 

time window between sample acquisition date and satellite image date. Measured in situ chl-a values were 

plotted against Rrs output for each algorithm and the plots were fitted with quadratic regression curves. 

The strength of the correlation was judged using Pearson’s R
2 

and a p value. The few chl-a values above 

30ppb were excluded from the analyzed data sets to examine relationships without the influence of 

outliers. For each image, the time window was progressively decreased down to one day, wherein only 

points sampled within one day of the satellite image were included.  

 

Minimum chl-a. The same time window sensitivity analysis was conducted with the dataset restricted to 

only samples above 5ppb to investigate the sensitivity of algorithms to highly oligotrophic waters.  

 

Season. In addition to the nine images used in the previous analyses, three more images from New 

Hampshire were used to expand the temporal resolution of the seasonal analysis (Table 1). All of the in 

situ measurements corresponding to these images were sorted by Julian Day. Each algorithm output was 

plotted against Julian Day while the lake chl-a level was held relatively constant by restricting the data 

used to only points within a specific chl-a concentration range. A “Relative Slope” metric was designed to 

judge how much of an influence water quality parameters besides chl-a that changed throughout the year 

had on each algorithm.  

 

5. Model Validation 

 

The quadratic best-fit models with the one-day time frame from the Time-Window and Minimum chl-a 

sensitivity analyses for the August 25
th
, 2014 satellite image of Maine were validated on the data sets 

from August 26, 2000, August 22, 2013, and August 9, 2014 to assess the possibility of using the models 

predictively. The time-window used for the validation set was chosen to ensure a high number and range 

of chl-a values. A perfectly predictive validation would produce a line of best fit with a slope of one, y-

intercept of 0, and RMSE of zero. The image from the year 2000 was a Landsat 7 image to provide 

insight on how well models generated in the future from Landsat 8 data could be used to retroactively 

study archived Landsat images from before 2013. Chl-a levels predicted by each model based on each 

algorithm’s output were plotted against the corresponding measured chl-a values. A linear regression and 

RMSE were used to assess the model’s predictive performance.   

 

RESULTS 

 

Using data from both states and from all different times of year, relationships between each algorithm and 

the in situ chl-a measurements were very weak (Figure 2). There was some evidence of trends – like the 

highest in situ chl-a measurements all having relatively low KIVU outputs – that became more apparent 

when specific images were studied instead of using all the data points across different regions and 

seasons. 

 

1. Time Window and Minimum chl-a Level: Maine  

 

Limiting the time window between sample acquisition date and satellite image date produced clear and 

consistent results for August 26, 2000 and August 25, 2014, the two images with the most chl-a values 

above 10ppb. For the August 26, 2000 image, the correlation improved slightly only for KIVU and Kab1 

from a five to a three day window, but with a two day window each of the five algorithms showed the 
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strongest relationship to the in situ measurements. Limiting the sample set to only points above 5ppb had 

a marginal and inconsistent effect on the correlations (Table 3). For all four data sets considered, KIVU 

and Kab1 displayed the strongest correlations, explaining over 95% of the variation in the most specific 

sample (within two days and over 5ppb) (Figure 3). 

   

For August 25, 2014, reducing the time window removed noise and led to a stronger correlation between 

the in situ measurement and the output for all six algorithms (Figure 4). The algorithms were seemingly 

less sensitive to chl-a values below 5ppb, so the correlations were significantly stronger when only points 

above this floor were considered. For the most specific data set (within one day and above 5ppb), each 

algorithm explained over 75% of the variation in the eight data points (Table 4).  

 

The strength of the correlations for the August 22, 2013 image was highly dependent on the algorithm. 

There were no significant correlations for SABI, NDVI, or 2BDA, but there was evidence that a larger 

sample size would have resulted in similar correlations to the previous two images because the algorithm 

outputs for the four samples with chl-a levels above 10ppb were grouped together at one end of the output 

range. The KIVU, Kab1, and Kab2 algorithms were moderately correlated with the measured chl-a levels. 

The correlations improved with a decreasing time window and – except for the one day sample that only 

had a seven data points – improved greatly by imposing a 5ppb floor. For the one day window with no 

chl-a floor, KIVU, Kab1, and Kab2 explained 48.77%, 37.91%, and 46.64% of the variation in the in situ 

data, respectively.  

 

For June 19, 2013, there were no significant correlations between in situ chl-a and algorithm output for 

any of the six algorithms. There were not enough samples with chl-a above 5ppb to impose the minimum 

value limitation, and the outputs for each algorithm were extremely variable for the low chl-a value 

sample points. Likewise, there were no significant correlations for August 9, 2014, and all algorithms 

showed minimal sensitivity for chl-a values below 10ppb. In both cases, neither imposing a time window 

limitation nor a minimum chl-a limitation helped to eliminate the noise in the correlations between the 

small range of chl-a values and the associated algorithm outputs.  

 

2. Time Window and Minimum chl-a Level: New Hampshire 

 

The sensitivity analyses on New Hampshire data revealed significant relationships only for the August 3, 

2015 image (Figure 5), drawn in part by the two samples with chl-a values above 10ppb. These 

relationships did improve from five days to two days for each algorithm, except SABI, which showed no 

significant correlations under any time window (Table 5). July 12, 2013 also had two points that were 

slightly above 10ppb that caused very slight trends for the NDVI and 2BDA algorithms, but all other 

points were scattered. For June 29, 2014 and August 19, 2015, none of the six algorithms could 

differentiate between the samples of chl-a values that were all below 10ppb.  

 

3. Effect of Season 

 

The amount of variation in algorithm output for a given chl-a range explained by the date varied from 

explaining almost none of the variation in the output data to explaining over 30%. The low relative slopes 

for the NDVI and 2BDA algorithms indicate that these algorithms changed the least over time for 

relatively constant chl-a values (Table 6). The SABI algorithm only displayed a slight effect of season for 

chl-a values in the 6-10ppb range. The Kab1 algorithm was consistently negatively correlated to the day 

of the year, and for the last two chlorophyll ranges, the time of year significantly explained 23.53% and 

11.79%, respectively, of the variation in algorithm output. The Kab2 algorithm had a consistently positive 

relationship with the day of year that was again most significant for the two higher chlorophyll ranges, 

where the time of year significantly explained 30.76% and 25.91%, respectively, of the variation in 

algorithm output. The KIVU algorithm output showed the greatest effect of season, with a consistently 
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positive relationship. For the 4-6ppb chl-a range, time of year explained 39.53% of the variation in the 

positive trend of algorithm outputs (Figure 6).  

 

4. Model Validation  

 

The models used for validation were the quadratic models of best fit for the August 25
th
, 2015 Maine data 

points sampled within one day of the satellite image. The models created using all of the data points (M1), 

as well as the models created using only data points with chl-a values above 5ppb (M2) were validated.  

 

The models were validated on the August 9
th
, 2014 Maine data set with a time-window of three days. 

Each M1 model except for SABI had positive slopes, but they were all below 0.55 and the intercepts were 

also all above five, suggesting that the M1 models overestimated low chl-a values and underestimated 

higher chl-a values. The models were most accurate for the KIVU algorithm. The same pattern was true 

for the M2 models, but the slopes were slightly lower and the intercepts slightly higher, indicating even 

more extreme over- and under-estimation. There were SABI, NDVI, and 2BDA values in the 8/22/13 set 

that fell well outside the algorithm output domain on which the 8/25/14 model was built, so these were 

excluded from the validation.  

 

The models were validated on the 8/22/13 data with a time-window of two days. The M1 models had 

slopes close to 0.5 and intercepts ranging from 3.4 (SABI) to 9.2 (KIVU), again indicating the same 

pattern of prediction inaccuracy. The NDVI and 2BDA models had the highest RMSE. There were SABI, 

NDVI, and 2BDA values in the 8/22/13 set that fell well outside the algorithm output domain on which 

the 8/25/14 model was built, so these were excluded from the validation. The M2 models for KIVU, 

NDVI, Kab1, and Kab2 had slopes above seven and intercepts below one, suggesting that these models 

were overestimating chl-a values as the actual values increased. In general, the performance of the models 

on 8/25/14 and on 8/22/13 samples was poor and inconsistent. No model was able to predict known chl-a 

values with any significant accuracy.  

 

For both M1 and M2 models validated on the Landsat 7 data from August 26, 2000 with a time window 

of two days, all algorithms had positive correlations between predicted and measured chl-a (Table 7). The 

models had slopes much closer to one and intercepts closer to zero compared to the other two validations, 

and RMSE values were consistently smaller. There was no clear distinction between any of the 

algorithms. The M1 models proved relatively accurate for the many smaller chl-a values as well as the 

three chl-a values that were above 15ppb. The M2 models all overestimated the smaller chl-a values and 

underestimated the higher ones. The models could not be validated for Kab2 since it uses a band that is 

not available from Landsat 7 data.  

 

DISCUSSION 

 

This study aimed to identify the applicability of Landsat 8 remote sensing technology for monitoring 

many small water bodies simultaneously primarily by comparing chl-a retrieval algorithm predictions to 

nearly coincident in situ observations in New Hampshire and Maine. The relationships between the two 

data sources were extremely robust in some cases, but minimal in others. The primary factors affecting 

the strength of the correlations were the range of in situ chl-a values sampled for a particular satellite 

image, the specific algorithm employed, the percentage of cloud cover for the satellite scene, and the time 

window between in situ samples and the satellite image.  

 

CHL-A RANGE: The stark differences between the robust correlations in Maine and the unenlightening 

relationships in New Hampshire is attributable to the fact that the Maine lakes had many more chl-a 

concentrations outside of the 0-10ppb range. The plots of Maine algorithm outputs, particularly for 

8/26/00 and 8/25/24 - which had 12 and 11 lakes with chl-a above 10ppb (Table 1) - show clearly that 
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most of the retrieval algorithms produce varied results for lakes with low chl-a values. Since almost all of 

the lakes sampled in NH fell into this category, the retrieval algorithms did not appear to be closely 

related to the in situ measurements. When there were enough sampled lakes with higher chl-a values, 

imposing a chl-a floor consistently improved correlations. An arbitrary floor of 5ppb was generally 

sufficient to achieve this result, but in some cases a slightly higher floor was more suitable (Figure 7). 

This is slightly higher than the 3ppb sensitivity limit described by Brivio et al. (2001) using the KIVU 

algorithm, but Kabbara et al. (2008) found that the Kab1 and Kab2 algorithms explained above 70% of 

the variation in 34 chl-a samples below 4ppb in coastal Tripoli. It is likely the heterogeneity of the lakes 

in the study region that introduced much of the variation in the oligotrophic, low chl-a lakes, suggesting 

that studying a wide variety of different water bodies comes with a tradeoff of sensitivity.  

 
ALGORITHMS: The specific chl-a retrieval algorithm itself also proved to be a strong indicator of how 

robust the relationships were. The KIVU, Kab1, and Kab2 algorithms were consistently more related to 

the in situ samples than the 2BDA, SABI, and NDVI algorithms. These distinguishing characteristic of 

these first three algorithms compared to the other three is that they used L8 bands 1-4 and not band 5.The 

2BDA, SABI, and NDVI algorithms have proved effective retrieval algorithms using satellites other than 

L8 because of the narrower near-infrared band (NIR). Landsat’s NIR Band 5, however, is the closest 

comparable band, with wavelength of 850-880nm. This is well over the 706nm wavelength absorbance 

peak of chl-a that is more accurately represented in NDVI and NDCI (Normalized Difference Chlorophyll 

Index) remote sensing indices using other satellites. This is made evident by the fact that the NDVI 

retrieval algorithm presented here produces the reverse trend as would be expected for a measure of 

greenness, but despite the specific chl-a absorbance wavelength relevance it still proved a decent indicator 

of measure chl-a. Beck et al. (2016) noted too that Landsat 8’s NIR band distance from the chl-a 

reflectance peak made algorithms using Band 5 less reliable. They found that the algorithms that 

compared the visible green peak to red or blue minima using Bands 1-4 performed the best. Derived 

combinations of these bands like those used by Kabbara et al. (2008) could be used at least for prediction 

within a specific region and season, but the success of Kab1 and Kab2 in this study suggest that these 

complex algorithms could still be useful outside of the original area of study too. Odermatt et al. (2012) 

found that green/blue ratios were most applicable to retrieve 0-10ppb chl-a concentrations, but red-NIR 

ratios became more useful as the measured concentrations increased, suggesting that a combination of 

algorithms might be necessary to study a wide range of lakes.  

 

CLOUD COVER: Although remote sensing is often useful for its ability to overcome limitations of in situ 

sampling, there was evidence that environmental conditions and weather affected the retrieval algorithms 

just like poor weather would interfere with sampling efforts in the field. In addition to the fact that the 

8/26/00 and 8/25/24 Maine images had a wider range of chl-a samples, these two scenes also had much 

lower cloud cover in the region. The same was true in New Hampshire, where the only image with 

significant correlations was the 8/3/15 image that had only 0.15% cloud cover, an order of magnitude less 

than all other New Hampshire images. Mishra et al. (2012) noted that MERIS satellite images that were 

not cloud-free required cloud masking before effectively interpreting chl-a retrieval algorithm data. 

Urbanski et al.’s (2016) study in Poland relied on uncloudy images too, and concluded that at least in that 

region, Landsat 8 and the European Space Agency’s Sentinal 2 satellite would together provide at least 

one uncloudy image each month. Investigations of atmospheric correction techniques for L8 are aiming to 

reduce the weather limitations of remote sensing so that some cloud presence in an image can still 

produce robust chl-a prediction results (Concha and Schott 2015b).  

 

TEMPORAL LIMITATIONS: Decreasing the time between the measured chl-a concentration and the 

satellite image consistently improved algorithm performance. The inconsistent distribution of samples 

around each scene made a rigorous analysis about the minimum acceptable time window difficult, but it 

was evident that more time introduces more noise. This is likely the result of either increased particulate 

matter in the water from rain or from actual changes in phytoplankton density and distribution that occur 
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between the in situ sample and the satellite image (Toming et al. 2016). Studying fewer sampling 

locations makes coincident surface measurement much more feasible (Beck et al. 2016), but studies 

involving dozens of different lakes used time windows of as little as one day (Kabbara et al. 2008, Keith 

et al. 2012) and as many as six days (Urbanski et al. 2016) with relative success.  

 

On a wider temporal scale, the time of year also had a clear effect on the algorithm outputs, with the three 

algorithms that seemed best tuned to chl-a in the water column being the most affected. As turbidity and 

bottom vegetation likely increased throughout the year along with chl-a, these indices that in any given 

date did the best at characterizing the “greenness” were inconsistent throughout the year. This seasonal 

specificity poses a challenge for predictive remote sensing, which would ideally be tuned specifically to 

chl-a so that seasonal variation in other water quality parameters does not affect the output. Despite the 

limitations imposed by L8’s relatively narrow bands, a preliminary investigation suggested that L8’s 

thermal bands 10 and 11 are relatively well correlated with surface water temperature, which could 

potentially be incorporated into chl-a retrieval algorithms as a seasonal correction term.  

 

POSSIBILITY OF PREDICTION: Although even correlations between chl-a retrieval algorithms and in 

situ samples across many small lakes is an advancement, remote sensing technology would ideally be 

used to develop models built on one or several satellite scenes to accurately predict chl-a from other 

scenes acquired in the future. The validation results from this study clearly indicate that this type of 

prediction is possible even when many different lakes are in question. The models were built using the 

August 25, 2014 scene with the most robust correlations and widest range of algorithm outputs to 

maximize the applicability to scenes from other times of the year and other years. It is not surprising 

based on the results of the correlational study that the validations on the other two L8 scenes were not 

very accurate.  

 

The validation on the L7 8/22/00 image, however, proved most successful since this was the second of the 

two scenes with the most robust correlations to begin with. This result is particularly important because it 

demonstrates how models built using the newest Landsat satellite iterations could not only be useful for 

monitoring chl-a in the future, but could also be used retroactively to investigate chl-a concentrations 

from archived satellite images. Even using a validation set with a time window of five days – which is 

known from the correlational analysis to introduce some noise – the model is very clearly able to 

distinguish between “high” and “low” chl-a concentrations. When the time window of samples used was 

narrowed to within three days of the image date, some of the outlying points are removed as expected 

(Figure 8). Even though this model does not predict within a narrow margin of error the actual chl-a 

concentration, its clear ability to differentiate between classes of lakes is still useful, especially on a 

regional scale. Recent studies for large-scale remote sensing have been satisfied with simply classifying 

the tropic status of lakes into broad categories (Bresciani et al. 2011, Watanabe et al. 2015, Andrzej 

Urbanski et al. 2016). In a region like the Northeastern United States, remotely sensed classification of 

the hundreds of lakes in the area would be a powerful tool for water quality management.   

 

CONCLUSIONS AND SUGGESTIONS: This study compared in situ chl-a concentration measurements in 

to chl-a retrieval algorithm predictions from satellite observations over Maine and New Hampshire. The 

KIVU, Kab1, and Kab2 algorithms in particular – which used Landsat 8 bands 1-4 rather than band 5 – 

explained large amounts of the variation in measured vs. predicted chl-a. The correlations were highest on 

cloud-free days, and improved dramatically with increased temporal coincidence of the sampling effort. 

Additionally, the algorithms explained over 95% of variation in the data after imposing a chl-a minimum 

of 5ppb, suggesting that the chl-a models have a difficulty capturing low chl-a levels, but are much more 

successful with higher concentrations. Significant seasonal variation in the algorithm outputs can be 

explained by the wide Landsat 8 bands that do not record only the narrow band of chl-a reflectance, and 

can potentially be mitigated with remotely sensed water temperature in lieu of narrower satellite bands. 

The validation results showed that models built using a wide enough range of sampled concentrations can 
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in some cases reliably classify the chl-a concentration in any given 30m pixel in past or future satellite 

images that is cloud-free. 

 

This investigation points to improvements that both remote sensing specialists and ecologists could make 

to advance large scale remote sensing of freshwater resources. First, the coordination of sampling efforts 

with satellite overpasses would provide much more data for model development. Samples nearly 

coincident with the satellite image are clearly more useful for investigating correlations and building 

predictive models. Organizing VLMP or VLAP volunteers to conduct their water quality analysis on days 

when a satellite like L8 will be acquiring an image of the region will provide the data required for refining 

retrieval algorithms. Second, the application of remote sensing to solving ecological problems will require 

intentional band design to maximize the ecological relevance of reflectance outputs. This study confirms 

Beck et al.’s (2016) conclusion that high spatial resolution satellites like Sentinal-2A and Landsat-8 are 

most relevant for monitoring small-inland water bodies even though they sacrifice the spectral resolution 

that other satellites offer. As engineers continue to weigh the tradeoffs between temporal resolution, 

spatial resolution, and spectral resolution, it will be important to take into account the needs of end users 

like ecologists and policy makers. Ultimately, this investigation demonstrates how further communication 

and collaboration between scientists, engineers, and policy makers can help to solve large-scale problems 

like protecting valuable freshwater resources.  
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 APPENDIX  

 
TABLE 1. Landsat 8 images (*besides August 26, 2000, from Landsat 7) acquired over Maine (P12R29) and over 

New Hampshire (P13R30) and the available corresponding in situ chl-a data. The NH images from September and 

October were used for seasonal analysis, but not assessing algorithm performance. 

 
 Date  Cloud 

Cover  

Lakes 

Sampled  

Chl-a Min  Chl-a 

Max  

Chl-a 

Median  

Lakes with Chl-a 

above 10ppb  

NH  July 12, 2013  11.44%  19  1.410  11.050  4.750  2  

 September 30, 2013  2.56%  2  5.65  5.73  5.69  0  

 June 29, 2014  12.15%  13  1.29  6.74  3.76  0  

 September 17, 2014  11.91%  5  1.790  6.550  2.590  0  

 October 3, 2014  0.15%  6  1.320  2.540  9.510  0  

 August 3, 2015  3.14%  17  1.550  12.100  3.280  2  

 August 19, 2015  7.36%  28  1.070  9.770  2.530  0  

ME  August 26, 2000  0.31%  70  1.200  48.400  4.400  12  

 June 19, 2013  4.69%  19  1.300  48.000  3.000  1  

 August 22, 2013  12.78%  65  1.300  56.000  3.300  5  

 August 9, 2014  16.21%  54  1.200  17.000  4.050  3  

 August 25, 2014  0.47%  57  1.200  65.000  4.400  11  
 

 
TABLE 2. Descriptions of each of the six algorithms assessed. The original algorithm band math was converted to 

the closest comparable Landsat 8 band math. “Original Use” describes the type of water and the satellite for which 

the algorithm was designed.    

 

Algorithm  Landsat 8 Band Math  Original Use  Source  

Surface Algal Bloom 

Index (SABI)  

(B5-B4)/(B2+B3)  Ocean, designed to 

minimize variations in 

cloud shadow and 

atmospheric conditions, 

using MODIS satellite.  

Alawadi 2010  

3BDA-like (KIVU)  (B2-B4)/B3  Large freshwater lake, 

above 3ppb, Landsat 

TM.  

Brivio et al. 2001  

Normalized Difference 

Vegetation Index 

(NDVI)  

(B5-B4)/(B5+B4)  Estuarine and coastal 

waters 1-60ppb, using 

MERIS satellite.  

Mishra and Mishra 2012  

2BDA  B5/B4  Simulated turbid 

productive freshwater, 

using Landsat TM.  

Dall’Olmo and Gitelson 

2006  

 

Kab1  e^(1.67-

3.94*ln(B2)+3.78*ln(B3))  

Coastal, best-fit 

algorithm, chl-a below 

4ppb, using Landsat 7.  

Kabbara et al. 2008  

Kab2  e^(6.92274-

5.7581*(ln(B1)/ln(B3)))  

Coastal, best-fit 

algorithm, chl-a below 

4ppb, using Landsat 7.  

Kabbara et al. 2008  
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TABLE 3. Descriptive statistics for correlations between in situ chl-a values for Maine lakes and algorithm 

outputs from August 26, 2000 image. Data sets used were limited by days between the image and the sample 

as well as by imposing a chl-a minimum of 5ppb. The Kab2 algorithm was not used because it requires a 

bandwidth unique to Landsat 8.  

 
 5 days  3 days  2 days  

All points  

(n = 68)  

> 5 ppb  

(n = 27)  

All points  

(n = 44 )  

> 5 ppb  

(n = 19)  

All points  

(n = 25)  

> 5 ppb  

(n = 13)  

 R
2
  p  R

2
  p  R

2
  p  R

2
  p  R

2
  p  R

2
  p  

SABI  0.416

5  

<0.00

1  

0.465

9  

<0.00

1  

0.316

3  

<0.00

1  

0.292

9  

0.024

4  

0.807  <0.00

1  

0.815

7  

<0.00

1  

KIV

U  

0.873

2  

<0.00

1  

0.854

2  

<0.00

1  

0.894

2  

<0.00

1  

0.884

6  

<0.00

1  

0.924

5  

<0.00

1  

0.954  <0.00

1  

NDV

I  

0.632

6  

<0.00

1  

0.671

7  

<0.00

1  

0.578  <0.00

1  

0.571

8  

<0.00

1  

0.797

5  

<0.00

1  

0.789

4  

<0.00

1  

2BD

A  

0.339

5  

<0.00

1  

0.389

7  

<0.00

1  

0.258

9  

<0.00

1  

0.234

2  

0.046

1  

0.753

3  

<0.00

1  

0.758

1  

<0.00

1  

Kab1  0.840

2  

<0.00

1  

0.820

4  

<0.00

1  

0.902

9  

<0.00

1  

0.910

2  

<0.00

1  

0.934

3  

<0.00

1  

0.962  <0.00

1  

Kab2  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  NA  

 
 

TABLE 4. Descriptive statistics for correlations between in situ chl-a values for Maine lakes and algorithm 

outputs from August 25, 2014 image. Data sets used were limited by days between the image and the sample 

as well as by imposing a chl-a minimum of 5ppb.  

 
 5 days  3 days  1 day  

All points  

(n = 55)  

> 5 ppb  

(n = 23)  

All points  

(n = 38)  

> 5 ppb  

(n = 16)  

All points  

(n = 16)  

> 5 ppb  

(n = 8)  

 R
2
  p  R

2
  p  R

2
  p  R

2
  p  R

2
  p  R

2
  p  

SABI  0.197

6  

<0.00

1  

0.439

2  

0.002  0.275

4  

<0.00

1  

0.547  0.003  0.578

5  

<0.00

1  

0.975

2  

<0.00

1  

KIV

U  

0.568

6  

<0.00

1  

0.440

2  

0.003  0.666

4  

<0.00

1  

0.644

6  

<0.00

1  

0.800

4  

<0.00

1  

0.746

9  

0.032  

NDV

I  

0.404

2  

<0.00

1  

0.604

2  

<0.00

1  

0.370

2  

<0.00

1  

0.850

4  

<0.00

1  

0.850

4  

<0.00

1  

0.985

9  

<0.00

1  

2BD

A  

0.206

6  

<0.00

1  

0.551

4  

<0.00

1  

0.211

8  

0.004  0.713

4  

<0.00

1  

0.507

1  

0.002  0.980

6  

<0.00

1  

Kab1  0.587

4  

<0.00

1  

0.489

1  

0.001  0.656

5  

<0.00

1  

0.664

4  

<0.00

1  

0.779

5  

<0.00

1  

0.782

8  

0.022  

Kab2  0.549

6  

<0.00

1  

0.437

5  

0.003  0.646

5  

<0.00

1  

0.658

9  

<0.00

1  

0.786

4  

<0.00

1  

0.768

8  

0.026  
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TABLE 5. Descriptive statistics for correlations between in situ chl-a values for New Hampshire lakes and 

algorithm outputs from four Landsat 8 images. Data sets used were limited by days between the image and the 

sample, with the smaller time window chosen to ensure an adequate sample size for each date. Meaningful 

relationships (bolded) were only present for the August 3, 2015 image.  

 

New 

Hampshire 

Lakes  

July 12, 2013  June 29, 2014  August 3, 2015  August 19, 2015  

5 days  
(n = 19)  

3 days  
(n = 14)  

5 days  
(n = 13)  

3 days  
(n = 9)  

5 days  
(n = 17)  

2 days  
(n = 13)  

5 days  
(n = 28)  

1 days  
(n = 16)  

SABI  R
2
  -0.1117  -0.1234  -0.1918  -0.2017  -0.1364  -0.1583  -0.04217  -0.1074  

 p  0.9094  0.7566  0.9665  0.732  0.9609  0.8379  0.6404  0.7657  

KIVU  R
2
  -0.00695  0.05568  0.01494  0.2425  0.3543  0.5781  -0.07218  0.02713  

 p  0.4119  0.2912  0.3727  0.1833  0.01839  0.005374  0.9132  0.3299  

NDVI  R
2
  0.1694  0.1861  0.1422  0.1041  0.2299  0.4878  -0.01767  0.1448  

 p  0.08832  0.1286  0.1866  0.3034  0.06309  0.01417  0.4757  0.1427  

2BDA  R
2
  0.1806  0.1906  0.1879  0.07866  0.2498  0.5068  -0.03746  0.1704  

 p  0.07924  0.1247  0.1419  0.3299  0.05254  0.01173  0.6051  0.1171  

Kab1  R
2
  -0.01449  -0.0226  0.00177  0.1476  0.3548  0.5848  -0.06049  -0.1411  

 p  0.4373  0.4512  0.3983  0.2612  0.01828  0.004959  0.7962  0.9305  

Kab2  R
2
  -0.02982  -0.0220  -0.1327  -0.0721  0.3627  0.6062  -0.0556  -0.0995  

 p  0.493  0.4497  0.7494  0.5199  0.01676  0.003806  0.7515  0.7309  
 
 

 

 

TABLE 6. Comparison of relationships between algorithm output and Julian Day of year. The relative slope is a 

metric to compare the slopes for different algorithms calculated by normalizing each slope by the range of the 

algorithm and then dividing each by the smallest corrected slope. Negative values represent decreasing 

algorithm outputs as the year went on. Each * represents an outlier that was removed from the data set to 

ensure representative regression lines.  

 

                       

 

 

 

 

CHl-A Ranges:  0 - 2.5 

ppb (n = 

81)  

2.5 - 4 

ppb (n = 

104)  

4 - 6 ppb 

(n = 79 )  
6 - 10 

ppb (n = 

52)  

SABI  Relative 

Slope  
4.88*  1.49  -1.97***  19.83*  

KIVU  Relative 

Slope  
15.57  22.17*  42.34*  38.92  

NDVI  Relative 

Slope  
-5.63  -2.36  -11.74  -5.56  

2BDA  Relative 

Slope  
1.10  1.00  -14.29  -4.41  

KAB1  Relative 

Slope  
-7.31  -16.58*  -27.81**  -31.24*  

Kab2   n = 75  n = 85  n = 56  n = 43  
Relative 

Slope  
14.12  14.84*  29.05  38.07*  
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TABLE 7. Linear validation (ax+b) of 8/25/14 models built with all data points on 8/26/00 data sampled 

within two days of image acquisition (n = 25). M1 is the model built using all 8/26/00 data points, while 

M2 is that built using just those with chl-a > 5ppb.  

 

  SABI  KIVU  NDVI  2BDA  Kab1  Kab2  

M1  a  0.7879  0.86705  1.0237  1.1806  1.34812  NA  

b  1.0804  0.4001  0.8425  0.8151  0.3126  NA  

RMSE  3.0372  2.5308  3.5808  4.9112  2.2568  NA  

M2  a  0.6677  0.53172  0.52237  0.7151  0.53831  NA  

b  5.3607  6.36092  5.60774  5.7730  6.71173  NA  

RMSE  2.0121  0.9446  1.6677  2.9022  0.9031  NA  
   

 

 

TABLE 8 (not referenced in text). Band descriptions and wavelengths for USGS Landsat 7 (L7) and 

Landsat 8 (L8).  * Denotes that those bands are acquired at 100m resolution, but are resampled to 30m in 

the data product.  

 

L8 Band Wavelength (um) Resolution Comparable L7 Band 

Band 1 – Coastal aerosol 0.43 – 0.45 30 None 

Band 2 – Blue 0.45 – 0.51 30 Band 1 

Band 3 – Green 0.53 – 0.59 30 Band 2 

Band 4 – Red 0.64 – 0.67 30 Band 3 

Band 5 – Near IR 0.85 – 0.88 30 Band 4 

Band 6 – Short-wave IR 1 1.57 – 1.65 30 Band 5 

Band 7 – Short-wave IR 2 2.11 – 2.29 30 Band 7 

Band 8 - Panchromatic 0.50 – 0.68 15 Bands 2, 3, 4 

Band 9 – Cirrus 1.36 – 1.38 30 None 

Band 10 – Thermal IR 1 10.60 – 11.19 30* Band 6 

Band 11 – Thermal IR 2 11.50 – 12.51 30* Band 6 
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FIGURE 1. Lakes sampled by New Hampshire’s Volunteer Lake Assessment Program (left) and Maine’s 

Volunteer Lake Monitoring Program (right) that fall within Landsat satellite Path 13 Row 30 and Path 12 

Row 29, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 2. Correlation between the KIVU chl-a retrieval algorithm output and the in situ measured chl-a 

for 349 sampling points in Maine and New Hampshire lakes. Each of the six algorithms examined had 

similarly weak correlations.  
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FIGURE 3. In-situ chl-a values for Maine lakes plotted against KIVU output from August 26, 2000 

satellite image. Samples used are limited by time window (within five days or two days from the image 

date) and by imposing a minimum chl-a level (5ppb). These graphs are representative of the correlation 

trends of the other four algorithms described in Table 3.  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. In-situ chl-a values for Maine lakes plotted against NDVI output from August 25, 2014 

satellite image. Samples used are limited by time window (within five days or one days from the image 

date) and by imposing a minimum chl-a level (5ppb). These graphs are representative of the correlation 

trends of the other five algorithms described in Table 4.  
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FIGURE 5. Correlation between New Hampshire lakes in situ chl-a measurements and KIVU algorithm 

outputs for August 3, 2015 Landsat 8 image with a two day time window. This graph is representative of 

the relationship using NDVI, 2BDA, Kab1, and Kab1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. The effect of Julian Day of Year on KIVU output for all NH and ME samples within specific 

chl-a ranges.  
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FIGURE 7. In-situ chl-a values for Maine lakes sampled within five days of satellite image plotted against 

KIVU output from August 22, 2013. A 6ppb floor was used on the right to demonstrate how the 

algorithm’s sensitivity to low chl-a can affect apparent relationships.  

 

 

FIGURE 8. Validation of 8/25/2014 Maine model built using all samples on 8/22/00 image and coincident 

samples with a time window of five days (A) and a time window of three days (B). 

 

 

A
B


