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Abstract. Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable 

indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing 

spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics as it 

allows for coherent and consistent spatial and temporal observations, and, ultimately, estimates of lake 

functions without in situ measurements. However, in order for RS products to be utilized in this way, 

algorithms that relate in situ measurements to RS data must be developed.   Estimates of lake metabolic 

rates are of particular scientific interest since they are indicative of lakes’ roles in carbon cycling and 

ecological function. There have been recent advances in modeling lake metabolism using high frequency 

sensor data.  However, to date, there are few existing algorithms relating remote sensing products to in-

lake estimates of metabolic rates. Here we use satellite surface temperature observations from Moderate 

Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross 

primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to 

produce a univariate quadratic equation model/algorithms. Statistical analyses reveal significant positive 

relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific 

algorithms with MODIS temperature such as those for Lake Mendota (USA), Rotorua (New Zealand), 

and Rotoiti (New Zealand), showed stronger relationships than the general combined model using all 

lakes (n = insert number of lakes used), pointing to local influences. The ‘global’ algorithm we developed 

was validated using lakes whose GPP was estimated during an equivalent one-year time period but not 

utilized in the model, and showed a strong relationship (R2=0.76). These validation data suggest that our 

‘global’ algorithm has a potential to predict lake GPP on a global scale. 

 

INTRODUCTION 

Lakes provide a multitude of ecosystem services such as supplying water for human use, supporting 

habitat for biodiversity, and regulating local and regional climate (Postel 2000, Bronmark and Hanson 

2002, Krinner 2003). Although lakes cover a small global area, this area is larger than originally thought 

by the scientific community (Downing et al. 2006), and there are more than 117 million lakes around the 

globe (Verpoorter et al. 2014).  Currently, many if not most of these lakes are threatened by problems 

such as increased nutrient load, pollution, acidification, and invasive species (Tranvik et al. 2009). 

Sensitive to these types of inputs, lakes are considered indicators of ecosystem health and sentinels of 

climate change (Williamson et al. 2009).  Studying lakes and their biogeochemical interactions has the 

potential to reveal many mechanisms behind ecosystem processes.  

Lakes play an important role in the global carbon cycle. Carbon is constantly exchanged between lakes, 

atmosphere, and land. Twice as much carbon flows into inland aquatic systems from the land as flows 

from the land to sea (Cole et al. 2007). At the landscape level, lake ecosystems cycle carbon by receiving 

terrestrial carbon and producing organic carbon as a result of primary productivity (Tranvik et al. 2009).  
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They also have the capacity to act as both sinks and sources of CO2 depending on available nutrients and 

food web structure (Schindler et al. 1997).  Nutrient loading as a result of land use (e.g., agriculture) in 

lake catchments has been identified as a primary influence on eutrophication (increased productivity) and 

climate change can further impact increased productivity and nutrient cycling (Blenckner et al. 2002). 

Climate change will likely impact various biomes in differing ways, as decreased productivity triggered 

by climate change has been recorded as well as increased (O’Reilly et al. 2003). As a result, the scientific 

community is interested in understanding lake metabolism (gross primary productivity and respiration 

(Solomon et al. 2013) as an integrated measure of lake function. Lake ecosystem gross primary 

productivity, or the rate at which organic matter is synthesized in a given time period, is of particular 

importance since inland aquatic waters constitute a small portion of the Earth’s surface, yet are highly 

productive (Likens 1975).  Primary producers within lake ecosystems often include phytoplankton, 

macrophytes, and periphyton (Dodson et al. 2000), and these organisms and their metabolic rates can be 

affected by disturbances such as nutrient loading and climate change (Mooji et al. 2005, Solomon et al. 

2013). Thus, understanding the processes that contribute to lake metabolism can help further elucidate 

mechanisms driving a changing global carbon budget. 

Understanding ecosystem-level processes such as lake metabolism and how it responds to disturbances 

such climate change requires frequent, long-term data collected on large spatial scales (Williamson et al. 

2009). Currently, this is difficult to do given the small temporal and spatial scales and varied methods 

carried about in many lake studies (Palmer et al. 2015). Traditionally, lake metabolism is measured using 

bottle methods wherein water samples at different irradiance levels are captured in chambers and 

respiration and production are measured using elemental tracers such as carbon 14 (Staehr et al 2010). 

Generally daily values of gross primary production are derived from measurements taken per hour and 

then multiplied by day length (Morin et al. 1999). Such methods have limitations in that it is difficult to 

scale measurements and findings up to the ecosystem level due to uncertainty in container measurements 

(Bender et al. 1987), among other things.  Recently, metabolism has been estimated using high frequency 

data from sensors suspended from in-lake buoys (e.g., www.gleon.org, Solomon et al. 2013, Richardson 

et al. 2016).   

While it is difficult to manually carry out sampling across large spatial scales, remote sensing provides an 

opportunity to upscale and obtain indices of water quality parameters from local to global scales (Tyler et 

al. 2016, Xiao et al. 2008). Applying remote sensing to lake studies is relatively novel, given that remote 

sensing technology has been historically developed primarily to gather information from land and ocean 

surfaces (Palmer et al. 2015).  However, there is an increasing need for using remote sensing to infer lake 

ecological functions as well as for monitoring as evidenced by several governmental agencies funding 

national lake monitoring projects that utilize remote sensing (Drusch et al. 2012). Again, this is, in part, 

because changes in lakes are indicative of larger ecosystem and climatic changes.  In addition, several of 

the newly launched sensors such as Landsat 8 operate at spatial and temporal resolutions that can be used 

for inland waters (Pahlevan et al. 2014).  

One sensor that is particularly useful for time series analysis is the MODerate Resolution Imaging 

Spectroradiometer (MODIS). MODIS is one of the instruments onboard NASA’s Earth Observing 

System (EOS) satellites, Terra (AM) and Aqua (PM). It has a temporal resolution of 1-2 days that is 

useful for time series analyses. MODIS has a spatial resolution ranging from 250 m to 1km, and 36 

spectral channels or bands that provide information about conditions in the water, land, and atmosphere 

(Table 1). In addition, it is one of the few sensors to have publically available data from the Earth Science 

Distributed Archive Centers from its inception in 2002 (Engel-Cox 2004). There are 44 processed data 

sets or products available on the DAAC, but region-specific algorithms may need to be applied to these 

data to acquire desired measurements. Data products are provided for atmosphere, land, ocean, and 

cryosphere, (Table 2) but none exist for freshwater aquatic systems.  

http://www.gleon.org/
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While the capability of satellite sensors to retrieve information from inland waters is limited due to the 

need for hyperspectral data that may not be available at needed spatial resolutions, many studies have 

successfully applied water constituent retrieval algorithms and obtained promising results (Kutser et al. 

2009).  For example, in-lake chlorophyll a has been successfully estimated using remote sensing (Gitelson 

et al. 2008, Dall’Olmo et al. 2006), although accuracy levels vary for each study. A major obstacle in 

applying remote sensing to lake ecology involves developing specific water constituent retrieval 

algorithms. There is currently no universal algorithm given the optical complexity of inland waters and 

thus many studies make use of products developed for studying ocean waters (Tyler et al. 2016), whether 

or not the systems under study are marine.  

A crucial aspect of applying remote sensing techniques to inland water pattern and process detection 

includes the development of algorithms that relate remote sensing products to in-lake measurements. 

There are various types of algorithms, such as those depending on band ratios derived from statistical 

relationships, algorithms based on physics-based optical models, and those depending on machine 

learning approaches (Morel and Priuer 1977, Werdell et al. 2013, Kiener and Yan, 1998). Algorithms 

using band ratios must be modified to incorporate regional environmental differences, but are generally 

applicable to a variety of lakes (Tyler et al. 2016). It must be noted that no studies have been conducted 

on relating remote sensing data to freshwater GPP estimates, making this project novel in methods and 

interdisciplinary approach (Fig 1). 

The overarching question under which this research sits is: How can remote sensing be applied to better 

understanding lake ecosystem processes? Specifically, 

 What is the relationship between remote sensing data and in-lake lake estimates of metabolism, 

specifically GPP? 
  

 Does MODIS surface temperature data correlate well with either individual, in-lake GPP 

estimates for lakes that span large geographic extents as well as trophic states? 
 

 Can a robust ‘global’ algorithm, which includes many lakes from around the world, be identified? 

SITE DESCRIPTION 

The ten lakes included in this study are a subset of the twenty-five lakes used in a previous study that 

examined in-lake metabolism through modeling gross primary productivity and respiration (Solomon et 

al. 2013). The study utilized high frequency sensor data to build the metabolism models. These lakes are 

part of the Global Lake Ecological Observatory Network (GLEON; www.gleon.org), in which high 

frequency and high resolution sensors are used to understand how lakes function in the face of global 

environmental change. Sensors are used to obtain dissolved oxygen (DO), water temperature, wind 

speeds, and other lake characteristic measurements. The lakes used in this study are as follows: Lake 

Balaton, (Hungary), Lough Feeagh (Ireland), Kentucky Lake, (Kentucky USA), Lake Mendota (USA), 

Müggelsee Lake (Germany), Lake Pontchartrain (Louisiana, USA) Lake Rotoiti (New Zealand), Lake 

Rotorua, (New Zealand), Sunapee Lake, (New Hampshire, USA), Lake Taihu (China), and Trout Lake 

(USA) (Table 3). The lakes vary in size, geographic location, and trophic state.  

DATA & METHODS  

In-lake data: In-lake gross primary production estimates (mg O2/L/d) for GLEON lakes were obtained 

from the Solomon et al. 2013 paper (via C. Solomon). These GPP estimates were derived by analyzing 

changes in dissolved oxygen as measured by the in-lake buoys. Of the twenty-five GLEON lakes from 

Solomon’s 2013 study, 11 lakes had an area over 1 km
2
 and were therefore large enough to be detected 

using the MODIS sensor and consequently analyzed in this study.  
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MODIS data: Four MODIS products were initially explored in order to determine potential relationships 

between these products and the in-lake modeled GPP estimates. These products were: Surface 

Temperature and Emissivity, (MYD11A2), Vegetation Indices (MYD13A2), Surface Reflectance 

(MYD09A1), and Terrestrial Gross Primary Production (MYD17A2).  Note that the MYD17A2 product 

estimates terrestrial GPP using eddy flux towers and does not incorporate aquatic GPP. Initial tests 

revealed strong relationships only between in-lake modeled GPP and the surface temperature 

observations; the MYD11A2 product was therefore selected as the main focus for this investigation. 

 

Surface temperature observations were obtained from NASA’s Reverb metadata discovery tool. The 

MODIS Aqua surface temperature product (MYD11A2) data were downloaded for each lake for time 

periods corresponding to the in-lake modeled GPP. The MYD11A2 is a ground-truth validated product 

containing Global land surface temperature (LST) and emissivity 8-day data compiled from daily 1 km 

resolution photos. The data are stored on a 1 km sinusoidal grid as average values of clear-sky surface 

temperature in the 8-day period.  The retrieved hdf files were processed in MATLAB (r2016a) by running 

scripts to extract daytime LST data. Pixel indexing ensured that the point of MODIS observation was 

within the lake area. The daily in-lake GPP estimate values were compiled into 8-day average values in 

order to be comparable to the 8-day average LST values. The emissivity data, representing how well the 

surface could radiate thermal energy, were constant values throughout the time period of the study and 

not used.  

 

The coordinates of the data points utilized in this study were cross-referenced using Google Maps to 

ensure that temperature outputs were from the lake instead of nearby land. One lake in particular, Lake 

Feeagh, could not be included in the analysis because the pixel location of the satellite data retrieval was 

not in the water body and in fact on nearby land. Consequently, surface temperature readings represented 

ground temperature, not lake water temperature.  

 

The data were screened for invalid outputs and temperature values of 0 were removed. Linear regression 

modeling was employed to determine the relationship between temperature and GPP for each of the 

individual 10 lakes, and best-fit curves were generated. In addition, the data for the 10 lakes were 

compiled and a general combined ‘Global’ model was determined using linear regression.  

 

For validation of the general combined model, modeled GPP data from Lake Acton (another lake in the 

GLEON metabolism study) using the MODIS LST data for a one-year period. Lake Acton was the only 

lake used for validation because it was the only remaining in the Solomon et al. (2013) paper (hence 

containing identically calculated GPP values) large enough to be captured by the 1-km MODIS sensor. 

RESULTS 

It is important to note that the in-lake modeled GPP peak values ranged from 0.4 to 25 mg O2 L/d, and 

some lakes displayed stronger seasonal patterns of GPP than others (Solomon et al. 2013). This daily 

variation of GPP values was muted in the calculation of 8-day averaged values of GPP and led to the 

creation of several outliers.  

It is also important to note that the in-lake modeled GPP displayed a wide ranged of values from 0.4 to 25 

mg O2 L/d; some lakes were oligotrophic (low productivity) and others were eutrophic (high 

productivity). Further, some lakes displayed stronger seasonal patterns of GPP than others (Solomon et al. 

2013). In addition, day-to-day spikes in GPP values not apparent when looking at 8-day averaged values 

of GPP and could have led to potential outliers (for example two unusually high GPP values could drive 

up the 8-day average value). 

Regression analysis showed MODIS Surface Temperature observations correlated positively with the in-

lake modeled GPP (R
2
=0.27)(Figure 3). The data were screened for invalid outputs and temperature 
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values of 0 were removed. The best-fit model for all combined lake data is the univariate quadratic 

equation y=0.0046x
2
 – 0.038x + 0.23 (p < 0.001). Individually, most of the lakes displayed stronger 

correlations between modeled GPP and MODIS surface temperature than the general combined model 

(Table 2). The three lakes with individual best-fit quadratic univariate models include Kentucky, Rotorua 

and Rotoiti. Two of these lakes are in the temperate zone of the Southern Hemisphere and one is in the 

Northern Hemisphere temperate zone. The quadratic equation best fitting Kentucky Lake was y=0.119x
2
-

0.1912x+ 0.8123, and its coefficient of determination was R² = 0.59 (p < 0.001). The quadratic model for 

Lake Rotorua was best described with the equation y = 0.0041x
2
-0.0546x + 0.4763, with an R

2 
of 0.71 (p 

< 0.001). Lake Rotoiti had a best-fit model with an equation y=-94.191x2 + 285.18x - 214.76 and an R
2
 

of 0.58021 (p<0.001).  Six of the remaining lakes had R
2
 values higher than that of general combined 

model, with the exception of Trout Lake, which had a model fit equation of   y = 24.405x2 - 71.03x + 

51.75 that was not statistically significant (Table 4). 

The resulting quadratic equation from the combined general model was used to estimate Lake Acton’s 

GPP from the downloaded MODIS surface temperature data. The new, MODIS-derived estimated GPP 

values were correlated with Solomon et al.’s (2013) previously in-lake modeled GPP values. The data 

were fit to a linear line with the equation y = 3.9619x - 2.879 and R2=. 7603(p=0.00021784) (Figure 6). 

DISCUSSION 

The results of this study yield several interesting findings. First, the relationship between in-lake modeled 

GPP for lakes of a wide global distribution and satellite surface temperature observations points to the 

potential for the creation of a global aquatic freshwater GPP product. In addition, the temperature-GPP 

relationship has possible biological and ecological mechanistic explanations behind it.  

The ecological reasoning for why temperature and gross primary production seem to be positively related 

is complex. On a cellular level, metabolic rates are influenced by temperature. Analysis of ice cores from 

the Vostok Lake suggest that there is no temperature minimum for metabolic processes to be carried out 

by phytoplankton and unicellular organisms, and that metabolism increases with increases in temperature 

(Price and Sowers 2004). In terms of limnological metabolism, lake respiration is temperature dependent 

on a cellular level, but an increasing number of variables lead to increased variation when scaled up to the 

ecosystem level (Yvon-Durocher 2010). 

Temperature Dependence of Respiration 

The GPP values in the Solomon et al. 2013 paper were derived by multiplying the average rate of 

photosynthesis per unit of photosynthetically active radiation (PAR). Ecosystem respiration, or the sum of 

the respiration of living organisms in the system, was also calculated in this study and when subtracted 

from the GPP values, yields NPP or Net Primary Production. Note that collectively, ecosystem level GPP 

and respiration constitute ecosystem metabolism (Solomon et al. 2013). In this case of this study, it is 

difficult to isolate respiration from GPP and assert that the temperature dependence of respiration (a 

potential component of GPP estimates) is responsible for the correlation between temperature and GPP. 

Further analysis in comparing Solomon et al. (2013) respiration rates with the MODIS temperature output 

could help to determine drivers of the relationship.  

Physical and Biological Lake Properties Relating to Lake Temperature 

The relationship between remotely sensed lake temperature and GPP could also potentially be explained 

by the physical properties of lakes. For example, GPP is coupled influenced by in-lake properties such as 

bathymetry, morphometry, depth, and catchment conditions, factors also influencing lake temperature 

(Carpenter et al. 2005, Staehr et al. 2012). Studies also show that temperature is the best predictor of 

chlorophyll biomass (Staehr et al. 2007), and chlorophyll biomass is, essentially, gross primary 
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production. A study conducted on Lake Mendota (one of the lakes included in this study) suggested that 

algal-macrophyte interactions were controlled by lake morphometry and temperature (Carpenter et al. 

2005), and it can be inferred that algae and macrophytes are organisms that contribute to lake GPP.  In 

addition, nutrient inputs and algal productivity are influenced by lake properties such as depth (Staehr and 

Jensen 2007). The models for individual lakes had stronger R
2
 than the ‘global’ model, which suggests 

that individual lake watershed characteristics have an impact on GPP. Examining the area: volume ratio 

of the watershed may further elucidate GPP dynamics. Lake size also plays an important role in in-lake 

productivity and its heterogeneity. Lake Taihu is known to have different concentrations of chlorophyll a 

in different parts of the lake, given its impressive size of 2338 km
2
 (Zhang and Liu 2007). In this sense, 

remote sensing could help to provide GPP measurements of large lakes that would be time consuming to 

obtain in situ. 

Impact of In-Lake Processes 

In addition to physical properties of lakes, storms and microstratification are two factors that can be 

considered when trying to understand the drivers behind GPP and the reasoning for the spread in the 

individual lake models, however these drivers would be difficult to discern from remotely sensed data. 

Microstratification occurring in lakes has been shown to correlate to lower values of GPP and respiration 

(Coloso et al. 2011). Given that microstratification was not something that was measured or considered in 

any of the individual lakes, it cannot be said whether or not it occurred, and/or if disruptions to 

microstratification are responsible for data outliers. Storm-induced destratification and subsequent 

changes in algal communities has been documented in Lake Balaton, Hungary (Padisák et al. 1990), and 

such potential losses of algal species can alter GPP rates. Daily changes in GPP that could have been 

potentially caused by storms were not captured in this study since the GPP values were averages of 8-day 

time periods. If MODIS could provide daily LST observations, these could be correlated with daily GPP 

estimates and perhaps outliers could be more easily revealed.  

The relationship between GPP and temperature that was confirmed by this study is important since long-

term temperature changes can even lead to shifting or mixing regimes such from polymictic to dimictic or 

dimictic to monomictic (Boehrer and Schultze 2008, Livingstone 2008). Being able to obtain changing 

GPP measurements could help predict shifting regimes and ultimately stop adverse changes before they 

occur.  

Challenges and Opportunities 

While producing some promising results, this is a first step toward building a GPP product for lakes. A 

few of the challenges and opportunities are listed below.  One primary challenge is the limited spatio-

temporal inference of remote sensing. For example, the LST output only retrieves surface temperatures of 

the water body. Some amount of gross primary production occurs beneath the surface (Carignan et al. 

1998), and utilizing only surface temperatures might affect the certainty of the model of below surface 

GPP that is occurring. In addition, surface temperature observations are 8-day composites of daily 

images, and currently no MODIS surface temperature and emissivity product at the correct spatial 

resolution produces daily LST outputs. Daily surface temperatures are available at coarser resolution and 

downscaling techniques may resolve this issue. Correlating daily GPP values to daily temperature values 

could reveal more fine-scale patterns.  

The variation in the results that could not be explained by the general model or the individual lake models 

can perhaps be attributed to the uncertainty in the GPP values resulting from Solomon et al.’s (2013) 

work. For example, Solomon et al. attribute uncertainty in their model to ecological variation among other 

considerations. This same ecological variation could be contributing to the spread in the data points when 

being fit to the model. Furthermore, for each of the lakes, there are several days throughout the one-year 

time period in which there are no estimated GPP values. As a result, several 8 day time periods had no 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854826/#R13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854826/#R57
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corresponding GPP values, leading to fewer data points. In addition, Trout Lake had GPP values ranging 

from only 9.79 x 10
-13

 mg O2/L/d to 0.43 mg O2/L/d; it was the only lake for which no real correlation 

existed between GPP measurements and MODIS temperature output. This could be because these GPP 

values were far too small and there is in fact a threshold of GPP measurements below which relationships 

between the two variables cannot be determined. This could potentially mean that the general model 

would have difficulty in predicting extremely low values of GPP, but it is generally well-suited predict 

moderate and higher levels of GPP. 

Model Improvement 

Currently, the general model has been validated with only Acton Lake because there was only one 

available lake from the 2013 Solomon et al. study that was not included in our general model but still big 

enough to be located by the MODIS sensor. Testing the model with more lakes with identically calculated 

GPP values could further validate the robustness of the general model.  

Future Product Development 

Despite uncertainty due to ecological variation amongst lakes and logistical difficulties with the state of 

technology of remote sensing, the results of this study point to great potential for applying remote sensing 

technologies to ecosystem-scale lake metrics of lake function. The fact that the general model can explain 

27% of the variation in the data is promising since the lakes are globally distributed and have a range of 

ecological and physical properties. A number of previous lake remote sensing studies reveal that their 

algorithms are better suited for regional prediction of lake indices (Dörnhöfer and Oppelt 2016, Woelmer 

et al. 2016) and while this may be currently true for the GPP model, future improvements could result in a 

good global predictor.  Currently, there is no freshwater GPP MODIS product, and it is possible that 

creation of a more robust algorithm that takes into consideration certain ecological parameters could lead 

to such a product. Interestingly, the MODIS product for terrestrial gross primary production calculates 

GPP as the total organic carbon accretion in the ecosystem in a given time period (Source: MODIS 

product development PDF), which is conceptually different from the photosynthetic rates that were used 

to obtain GPP values from Solomon et al. (2013). Since NEP and organic carbon accumulation are not 

always equivalent in aquatic systems (Lovett et al. 2006), it is important that future aquatic GPP products 

or algorithms produce estimates of GPP that are consistent with current limnological standards. In 

addition, the dates for which lake GPP was analyzed include summer months, when GPP is often at its 

peak. Lakes’ GPP have seasonal variation, with low concentration of chlorophyll a in the winter (Zhang 

and Liu 2007). An aquatic GPP product could allow for prediction of GPP levels during all seasons 

(excluding ice-on periods), which, over long-term analysis can reveal broad patterns about GPP 

fluctuations. Ultimately, this preliminary study suggests that remote sensing can be used for global-scale 

understanding of lake metabolism and ecosystem processes.  
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APPENDIX 

TABLE 1. List of bands available from the MODIS sensor and the type of information they collect. 

Information on MODIS bands from were obtained from https://lpdaac.usgs.gov/ maintained by the NASA 

EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 

Observation and Science (EROS) Center, Sioux Falls, South Dakota, [2014].  
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TABLE 2. List and specifications of MODIS Aqua products available for use and download.  

Information on MODIS products were obtained from https://lpdaac.usgs.gov/ - maintained by the NASA 

EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources 

Observation and Science (EROS) Center, Sioux Falls, South Dakota, [2014]. 

TABLE 3. Denotes characteristics of the eleven lakes analyzed in this study. These lakes are a subset of 25 

lakes in a GLEON global lake study (Solomon et al. 2013). The ‘Dates’ category refers to the dates for 

which data was collected on a daily basis.  

 

Trophic status key: Oligotrophic: low nutrient, clear lake. Mesotrophic: moderate level of dissolved 

nutrients. Eutrophic: nutrient rich lake, with abundance of plant life.  
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TABLE 4. Results of regression analysis of MODIS LST output versus in-lake modeled GPP. Shows the 

coefficient of determination and significance level for each individual lake general regression model.  

 

 

FIGURE 1. Conceptual model showing how information about lakes can be retrieved from remote sensing. 
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FIGURE 2. Map illustrating the global locations, size, and shapes of each of the lakes included in this 

study.  
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FIGURE 3. Quadratic model fit for all lakes’ GPP predicted from MODIS temperature output. (N=263, 

p=3.23 E -19). 
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FIGURE 4. Quadratic model fit for Kentucky Lake GPP predicted from MODIS temperature output. 

(N=45, p=1.45 E -11). 
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FIGURE 5. Quadratic model fit for Lake Rotorua GPP predicted from MODIS temperature output. (N=44, 

p=5.51 E -8). 
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FIGURE 6. Linear model fit for Lake Acton GPP predicted from MODIS-derived GPP ‘Global Model’. 

(N=12, p=. 00021784). 

 

 

 


