

Kingston,	NY,	Water	Quality	Report	from 2006
-----------	-----	-------	---------	--------	-----------

		1	Table of	f Detecte	d Contam	inants	
Contaminant	Violation Yes/No	Date of Sample	Average	Unit	MCLG	Regulatory Limit (MCL, TT or AL)	Likely Source of Contamination
Chloride	No	02/14/06	6	mg/L		MCL =250	
Sodium	No	02/14/06	2.8	mg/L		N/A	
Lead ¹	No	9/2005	0.006	mg/L	0	AL = 0.015	Corrosion of household plumbing
Copper	No	9/2005	0.05	mg/L		AL= 1.3	Corrosion of household plumbing
Sulfate	No	2/14/06	б	mg/L		MCL = 250	Naturally occurring
Total Dissolved Solids	No	2/14/06	41	mg/L		N/A.	
THM's ² Trihalomethanes	No	2006	39 24 - 50	ug/L		MCL =80	By-product of drinking water chlorination
HAA5's Haloacetic Acids	No	2006	19 11 - 28	ug/L		MCL = 60	By-product of drinking water chlorination
Turbidity ³	No	08/08/06	0.49	NTU	N/A	TT = <1 NTU	Soil Runoff
Turbidity ³	No	9/06 & 12/06	0.16	NTU	N/A	TT = <1 NTU	
Turbidity ³	No	2006	99.9%	NTU	N/A	TT= 95% of samples <0.3 NTU	

Notes:

1 – The level presented represents the 90th percentile of the 30 samples collected.

2 - This level represents the annual quarterly average calculated from data collected.

3 – We test turbidity levels because it is a good indicator of the effectiveness of our filtration system. Our highest single turbidity measurement for 2006 occurred on August 8th (0.49). State regulations require that 95% of the turbidity samples collected have measurements below 0.3 NTU and that all turbidities are below 1 NTU. During 2006, no individual turbidity measurement exceeded the 1 NTU level and only 3 samples out of 2,190 exceeded 0.3 NTU. The highest monthly average was 0.16 NTU and occurred in September and December.

Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

<u>Nephelometric Turbidity Unit (NTU)</u>: A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Milligrams per liter (mg/l): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm).

Micrograms per liter (ug/l): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb).

Picocuries per liter (pCi/l): A measure of radioactivity in water.

Poughkeepsie, NY, Water Quality Report 2006

Contaminant	NYS DOH MCL	US EPA MCLG	Violation Yes/No	Number of Samples	Range	Avg.	Sources in Drinking Water
		ļ	Microbiological		ints		
Total Coliform Bacteria	5% ¹	0%	No	1226	ND	ND	Naturally present in the environment.
Turbidity, NTU ²				·			Soil runoff, Flushing Hydrants
Point of Entry	95%<0.3		No	4,380	0.01-0.18	0.030	
City Distribution	5		No	1297	0.02-14.2	0.20	
	I	norganic Co	ontaminants mg	/I (unless o	therwise not	ted)	
Barium, mg/L	2	2	No	1	0.017	0.017	Erosion of natural deposits
Copper, mg/L	AL=1.34	1.3	No	63	0.006- 0.687	0.121	4 Erosion of natural deposits
Chlorine, mg/L	4	N/A	No	1230	0.00-2.33	0.76	Disinfectant additive
Chromium, mg/L	0.10	0.10	No	1	0.0026	0.002	occurring, and leaching from industrial wastes.
Lead, µg/L	AL=15⁵	0	No	68	ND-156	14 ⁵	Corrosion of household plumbing systems; Erosion of natural deposits;
Nitrate, mg/L	10	10	No	1	0.40	0.40	Runoff from fertilizer; Leaching from septic tanks; Sewage; Erosion of Natural deposits
Sodium, mg/L	N/A ⁶	N/A	No	1	17.8	17.8	Naturally occurring
			Volatile Orga Contaminar				
Haloacetic Acids (mono-,di-,& trichloroacetic acid, and mono-and di- bromoacetic acid), µg/L	60	N/A	NO	16	22.7-53.1	40.7	By-Product of Drinking Water Disinfection needed to kill harmful microorganisms
Total Trihalomethanes (TTHMs – chloroform bromodichloromethane dibromochloromethane and bromoform), μg/L	80	N/A	NO	16	28.3-120.0	66.6*	By-Product of Drinking Water Disinfection needed to kill harmful microorganisms

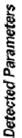
Contaminant	NYS Doh Mcl	US EPA MCLG	Violation Yes/No	Number of Samples	Range	Average	Sources in Drinking Water
			Radioactive	Contamina	nts		
Beta/Photon Emitters, pCi/L	4 mem/yr ⁹ (50 pCi/L)	0	No	1	0.574	0.95	Decay of natural deposits and man-made emissions
Combined radium-226 and 228, pCi/l	5	0	No	1	0.954	0.81	Erosion of natural deposits

1. A violation occurs when more than 5% of the total monthly Coliform samples are positive

- Turbidity is a measure of the cloudiness of the water. We test it because it is a good indicator of the effectiveness of 2. our filtration system. State regulations require that turbidity must always be below 1 NTU. The regulations require that 95% of the turbidity samples collected have measurements below 0.3 NTU. Our filtered water turbidity did not exceed 0.30 NTU in 2006
- N/A means not applicable.
- The level presented represents the 90^{th} percentile of the 60 sites tested in 2004. A percentile is a value on a scale of 100 that indicates the percent of a distribution that is equal to or below if The 90^{th} percentile is equal to or greater 4 than 90% of the copper values detected at your water system. In this case, 60 samples were collected at customer's homes and the 90th percentile value was the 0.121 mg/L while the maximum detected was 0.637. The action level for copper was not exceeded at any of the sites tested.
- 5. The level presented represents the 90th percentile of the 68 samples collected in 2004. The action level for lead was exceeded at six of the 68 sites tested. Of those six sites retests at the five highest sites including the top 4 had results of 4 µg/L or less.
- Water containing more than 20 mg/L of sodium should not be used by people on severely restricted sodium diets. Water containing more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets
- This level represents the highest quarterly annual average calculated from data collected.
- This level represents the highest quarterly annual average calculated from data collected 8
- The state considers 50pCi/L to be the level of concern for beta particles

Table Definitions:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water MCLs are set as close to the MCLGs as feasible.


Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety

Action Level (AL): The concentration of a contaminant, which if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (11): A required process intended to reduce the level of a contaminant in drinking water. Non-Detects (ND): Laboratory analysis indicates that the constituent is not present.

Nephelometric Turbidity Unit (NTU): A measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Milligrams per liter (mg/L): Corresponds to one part of liquid in one million parts of liquid (parts per million - ppm). **Micrograms per liter** (µg/L): Corresponds to one part of liquid in one billion parts of liquid (parts per billion - ppb). <u>Picocuries per liter</u> (pCi/L): A measure of the radioactivity in water. <u>Millirems per year</u> (mrem/yr): A measure of radiation absorbed by the body.

	NYSDOH	2120 Maria		CATSKLL/DELAWARE SYSTEM	STEM	3	GROUNDWATER SYSTEM		
FAMA ME LEKS	WCI	UXERA MOLO	# SAMPLES	RANGE	AVERAGE	4 SAMPLES	RANGE	AVERAGE	SOURCES IN DEFINITING WATER
CONVENTIONAL PHYSICAL AND CHEMICAL PARAMETERS	AMETERS								-
Alkalinity (ng/L CaCO.)			334	87-17.6	11.3	14	$11.6 \cdot 53.4$	28.1	Erosion of natural deposits
Aluminum (ug/L)	50-200 0		319	7-125	X	7	ND- 52	38	Erosion of natural deposits
Barium (mg.L)	61	2	319	0.01 - 0.02	C.02	7	0.01 - 0.03	0.02	Erosion of natural deposits
Calcium (ng/I)			334	4.9 - 8.5	5.4	14	9.2 - 33.4	17.1	Erosion of natural deposits
Chloride (mg/L)	250		321	8-20	9	=	23 - 96	47	Naturally eccuring; road salt
Chlotine Reiduel, free (mg/L)	e Ŧ		10754	0/01 - 1.35	C.66	123	0.02 - 1.30	0.66	Water additive for disinfection
Color - distribution, system (color units - apparent)			1996	3 - 42	2	82	1-12	9	Presence of iron, manganese, and organics in water
Color - entry points (color units - apparent)	15 15		1095	4 - 13	7	46	1.9	4	Iron and manganese, or organic sources, such as algal growth
Copper (ng/L)	1.3 0	1.3	334	0.003 + 0.141	110,0	14	0.003 + 0.019	000	Conceion of household plumbing systems is obtain of initial deposits, leaching from wood preservatives
Corrosivity (Langelier index)	0.48		318	3.05 to 1.55	-2.47	9	-2.06 to 1.46	-1.69	
Huoride (mg/L)	2.2 9	4.0	1515	$ND \cdot 1.2$	270	123	$0.3 \cdot 1.3$	1.0	Encodors of natural disposities waveradditive which promotes streng teethy runoff from fertilizer
Hardness (mg/L CaCO.)			319	17 - 34	81	6	38 - 156	88	Erosion of natural deposits
Hardness (grains/gallon[US]CoCO ₁) ⁽⁶⁾			319	1.0 - 2.0	1.0	6	2.2 - 9.0	1.6	Erosion of natural deposits
Iron (µg/1)	300 9		336	20 - 550	8	7	ND-90	20	Naturally counting
Lead (µg/L)	15 14	0	334	ND-4	0.6	14	ND - 1	D.6	Corrosion of household plumbing systems: ecosion of natural deposits
Magnestum (mg/L)			319	1.0 - 3.0	87 1	6	3.6 - 18.0	3.6	Erosion of natural deposits
Manganese (ng/L)	30D 0		336	6 - 261	6	7	$11 \cdot 31$	21	Naturally counting
Nitrate (mg/L nitrogen)	10	10	321	0.13 - 0.84	C.22	11	0.98 - 5.80	2.55	Runoff from fertilizer use; katching from septic tanks, wwage; erosion of natural deposits
Nurite (ng(L ntt:osen)	-	1	318	NE - 0.001	4C.031	6	Ð	ØX.	Runoff from feitilizer use: leaching from septic tanks, awage erosten of natural deposits
pH (pH units) ¹⁰	0.5 - 8.5 0		10756	6.8 - 8.7	2.3	128	$7.4 \cdot 8.2$	272	
Phosphate, Ortho- (mg,L)			10750	$0.6 \cdot 2.8$	2.0	123	$1.5 \cdot 2.7$	2.0	Water additive for corrosion control
Potassium (mg/L)			319	0.5 - 0.8	0.6	9	$0.8 \cdot 1.0$	0.0	Erosion of natural deposits
Silica [silicon oxide] (mg/l.)			318	1.8 - 5.8	2.9	9	$5.8 \cdot 6.8$	6.2	Erosion of natural deposits
Sodium (mg/L)	NDL®		319	6 - 12	80	7	13 - 43	18	Naturally counting; road salt, waier softeners; an inal waste
Specific Conductar.ce (nSjcm)			10756	70-150	82	123	$151 \cdot 574$	368	
Strontium (gg/L)			319	20 - 30	8	9	40.50	40	Erosion of natural deposits
Sulfate (mg/L)	250		321	1.8 9.9	6.0	10	11.0 11.5	19.3	Naturally occurring
Temperature (F)			10752	32 - 83	55	127	43 - 76	57	
Total Dissolved Solids (mg/L)	500 #		318	39 - 85	50	6	90 - 124	105	Metals and salts naturally occurring in the soll; organic matter
Total O.gath: Carlou (my/L tation)			318	1.0 - 3.9	1.5	6	$1.0 \cdot 1.4$	1.3	Organic matter naturally present in the environment
Turbidity ⁰⁹ , distribution system (NTO)	S (II)		1996	$0.8 \cdot 1.5$	L0	82	0.5 • 1.1	0.7	Soil runoff
UV 254 Absorbency (zm ²)			318	$0.022 \cdot 0.009$	0.032	9	0.025 - 0.032	0.029	Organic matter naturally present in the environment
Zinc (mg/L)	~		319	ND - 0.068	0.004	2	ND-0.006	0.000	Naturally accurates

New York City Water Quality Report 2006

Cary Institute of Ecosystem Studies

MONDERTIGEMUNCLIONARY				CATSK	CATSKILL-DELAWARE SYSTEM	SVSTEM	SR2	GROUNDWATER SYSTEM	STEM		-
S0 281 ND-3 : 2 1-2 1 By-preduct of drinkly clusted in the drink clusted in t	PARAMETERS	HOCIZIN		# SAMPLUS	RANGE	AVERAGE	# SAMPLES	HANGE	AVERAGE	SOURCE	ES IN DRINKING WATER
50 281 ND-3 : 2 1-2 1 By-preduct of drink 50 16 16 6.4-0.7 05 - - By-preduct of drink 50 12 <td>ORGANIC CONTAMINANTS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	ORGANIC CONTAMINANTS										-
30 281 $ND^+ 3$ $:$ 2 $1-2$ 1 B -preduct of druht 30 16 $16 \cdot 82$ 5 $ B$ -preduct of druht 30 16 $16 \cdot 82$ 5 $ B$ -preduct of druht 30 12 12 $12 \cdot 32$ 23 $ B$ -preduct of druht 30 12 $12 \cdot 32$ 23 23 $ B$ -preduct of druht 30 10 16 $1.7 \cdot 32$ 23 ND 17 ND 14 $ -$ <t< td=""><td>Disinfection By-Products detected:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Disinfection By-Products detected:										
30 16 1.6 1.6 1.6 1.6 1.6 0.4 0.7 0.5 · · · by-preduct of draining the distribution of draining terret draining terret distribution of draining terret distribution of draining terret draining tereret draining tereret draining	Brornochloroacetic acid (µg/L)	- 20		281	ND-3		2	1-2		By-preduct of drinking v	water chlorination
50 16 0.4 · 0.7 0.5 · · By-preduct of drank 30 12 1.2 · 3.2 2.7 · By-preduct of drank 30 16 1.7 · 3.2 2.3 · By-preduct of drank 50 16 1.7 · 3.2 2.3 · By-preduct of drank stored 5 101 · 2.62 171 6 106 · 180 By-preduct of drank stored 5 0 350 ND ND 17 ND · 1.6 By-preduct of drank stored 5 0 30 30 ND ND 17 ND · 1.6 By-preduct of drank stored 5 0 30 ND ND <td>Chloral Hydrate (µg/L)</td> <td>03</td> <td></td> <td>16</td> <td>1.6-8.2</td> <td>\$</td> <td>,</td> <td></td> <td></td> <td>By-preduct of drinking v</td> <td>water chlorination</td>	Chloral Hydrate (µg/L)	03		16	1.6-8.2	\$,			By-preduct of drinking v	water chlorination
50121212-3027 \cdot \cdot \cdot θ θ -reduct of drinki30 \cdot 16 $1.7 \cdot 3.2$ 2.3 \cdot \cdot \cdot θ θ -reduct of drinkiteeted: s s 0 350 ND 17 ND 17 ND 148 θ -reduct of drinkiteeted: s 0 350 ND ND 17 ND $106 \cdot 180$ 148 θ -reduct of drinkiteeted: s 0 350 ND 0.6 350 ND 17 ND $DStharge from drinkiteeted:s0200237ND0.60.0DStharge from drinkiteeted:s0200237ND0.0NDNDNDDStharge from drinkiteeted:s0200237ND10NDNDNDDStharge from drinkiteeted:s0200237ND10NDNDNDDStharge from drinkiteeted:s0000000000teeted:00000000000teeted:000000000000teeted:000<$	Chloropicrin (µg/L)	\$0		16	0.4 - 0.7	0.5	,			By-preduct of drinking v	water chlorination
30 16 1.7 + 3.2 2.3 · · · By-preduct of itmix tectedi · 0 318 101 - 252 171 6 106 - 160 146 By-preduct of itmix tectedi s 0 350 ND ND 17 ND 16 By-preduct of itmix retedi s 0 350 ND 0.6 350 ND 17 ND ND Disting from therbit retedi s 50 200 237 ND<0.6	Halcacetonitriles (HANs) (µg/L)	50		12	1.2 - 3.9	2.7				By-preduct of drinking v	water chlorination
· ·	Hzlogerated ketores (HKs) (µg/L)	05		16	1.7 - 3.2	2.3				By-preduct of drinking v	water chlorination
itectedi ND 17 ND 17 ND Distinge from dry training itectedi 5 0 330 ND ND 17 ND ND Distinge from dry training itectedi 5 50 22 ND 0.0 237 ND 0.0 200 237 ND	Total Organic Halogen (pg/L)	'		318	101 - 262	171	e	106-180	148	By-preduct of drinking v	water colorination
5 0 350 ND ND 17 ND 16 ND Distinge from herbid etertedi 5 50 237 ND<0.6.8 °N	Principal Organic Contaminants det	scted:									
Marcheele ND CL8 ND CL8 ND ZD ND	Tetrachloroethylene (µg/L)	\$	•	350	ÐX.	Ø	17	ND - 1.6 (18	Q	Discharge from dry clear	uers
50 200 237 ND 0.0 20 237 ND 0.0 Runoff from herbids eeteel: 50 22 ND 0.10 <0.05	Specified Organic Contaminants det	schedt									
5 50 22 ND- D.10 <0.05 1 ND Discharge from cher ectedi. ectedi. 30 297 ND- 13 <10	Dalapon (µg/L)	20		237	(21) 870 - CN	Ð	2	QN	Ð	Runoff from herbicide u	used on rights of way
ected: 30 297 ND-13 <10 14 ND	Hexachlorocyclopentadiene (ug/L)	~		22	01.0 - UN	< 0.05	1	ΩN	Ð	Discharge from chemica	al factories
30 297 ND-13 <10 14 ND ND </td <td>Unspecified Organic Chemicals detex</td> <td>ted:</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Unspecified Organic Chemicals detex	ted:			_						
10 350 ND 17 ND-1 10 ^D Formerly an additive N350H UM 550 ND 17 ND-1 10 ^D Formerly an additive N350H UM CATHALDELAWARE STRIFT ATTA NGC #SAMPLES FAMCE RAA # SAMPLES RAMCI RAA # SAMPLES NGC #SAMPLES FAMCE RAA # SAMPLES RAA # SAMPLES RAA 8 SAMCE RAA 8 SAMCE 8 SAMCE <td>Acetone (µg/L)</td> <td></td> <td></td> <td>202</td> <td>XD - 13</td> <td>< 10</td> <td>14</td> <td>QN</td> <td>Ð</td> <td>Occurs naturally and is t varnishes, plastics, adhe Alse used to clean and d</td> <td>used in the production of paints, estres, crganic chemicals and alcoho. dry parts of precision equipment</td>	Acetone (µg/L)			202	XD - 13	< 10	14	QN	Ð	Occurs naturally and is t varnishes, plastics, adhe Alse used to clean and d	used in the production of paints, estres, crganic chemicals and alcoho. dry parts of precision equipment
N13D0H U3EPA WCL CATSHELDELAWARE SITINCE ATEA CROTON SERVICE AREA CONDENSATIRE RETINCE ATEA NICL # SAMPLES EAMC RAA # SAMPLES RAA # SAMPLES RAA # SAMPLES RAA 8 SAMPLES RAA # SAMPLES RAA # SAMPLES RAA 8 SAMPLES 8 SAMPLES 8 SAM 8 SAMPLES 8 SAMME 8 SAME	Methyl fert-butyl ether (MTBE) (µg/L)	CI		350	0X	Ð	17	ND-1 ⁽¹²⁾	9	Formerly an additive to	gasoline
Mict # SAMPLES FANGE R.A. # SAMPLES FANGE R.A. # SAMPLES RANGE R.A. # SAMPLES R.A.				ELAWARE SER	VICE AREA	CBOTON	SERVICE ARE	010	CROUNDWIL	B JERVICE AREA	
60 ¹⁰⁴ 245 13 · C9 43 18 35 - 54 47 20 11 - 50 34 80.04 246 10 · 81 38 50 21 - 76 46 17 ND - 50 32			*	RANGE	+	SAMPLES	RANGE	W	AMPLES	EANGE RAA	SOURCES IN DRINKING WATER
g ^(L) 60 ^{0:4} 245 13 · 59 43 18 35 - 54 47 20 11 · 50 34) 80.04 2.46 10 · 81 38 50 21 · 76 46 17 ND · 50 32	Disinfection By-Products detected:	-						-	-	-	
) 80114 246 1.5+81 38 50 21-76 46 17 ND+50 32		60 ⁰⁴	245	19 - 69	43	18	35 - 54	47	_	34	product of drinking water chlorinstion
		80 D€	246		38	8	21 - 76	46		32	product of drinking water chlorination
	MICROBIAL PARAMETERS										

MICROBIAL PARAMETERS								
		USEPA		v	CITYWIDE DISTRIBUTION	NO		
		MCLG	# SAMPLES	RANGE	# SAMPLES POSITIVE	AVERAGE	HIGHEST MONTH % POSITIVE	
Total Coliform Basteria (% of samples positive/month)	5%	0	9754		36		1.3%	Naturally present in the environment
E. coll (CIU/10C mL)	63	0	\$754		1		0.1%	Iluman end animal fecal waste
Heterotrophic Flate Count (CFU/mL)	ΤΤ		3262	ND - 570C	3.07	.03.		Naturally present in the environment
-								
I FAD AND CODDED DUILE CAMPLING AT DESIDENTIAL WATED TAPS	UDENTIAL WATE	D TADA						

LEAD AND COPPER RULE SAMPLIN	OPPER RU	LE SAMP	PLING AT RE	VG AT RESIDENTIAL WATER TAPS	ATER TAPS						
	NVS DOH US EPV	US EPA	Surfac	te Water: Janu	Surface Water: January to December 2006	er 2006	Grou	indwater: Ju	Groundwater: July to December 2006	2006	
PARAIME IENS	AL	MCLG	# SAMPLES	FANCE	SAMPLES FANCE 9001 FERCENTILE # SAMPLES F SAMPLES RANCE 9001 FERCENTILE # SAMPLES VALUES VALUES TXCCCEDING AL	# SAMPLES EXCEEDING AL	# SAMPLES	RANGE	90th PERCENTILE VALUES	# SAMPLES EXCEEDING AL	
Copper (mg/L)	1.3	1.3	120	120 0.022 0.661	C.239	0	66	99 ND - 0.387	0.230	0	Corrosion of household plumbing systems
Load (µg/L)	15	0	120	120 ND 123.2	13	10	99 NID 85.3	ND 85.3	2	ಗು	Corrosion of household plumbing systems

Changing Hudson Project

Undetected Parameters

UNDETECTED CONVENTIONAL PHYSICAL AND CHEMICAL PARAMETERS

Antimency, Arsenic, Asbesto 0.6, Deryllium, Bromide, Cadmiam, Chronium, Cynnide, Feaming Agents, Gross Alpha 0.9, Eithi an, Mercury, Nickel, Selenium, Silver, "Strontium" Thallium, Tritium (3H) (2)

UNDETECTED ORGANIC CONTAMINANTS

Principal Organic Contaminants not detected:

2-Chlontoluene, 4-Calorotoluene, Ditromomerhane, 1,2-Dichlocohenzene, 1,3-Dichlocohenzene, 1,4-Dichlorothane, 1,2-Dichlorothane, 1,2-Dichlorothane, 1,2-Dichlorothane, 1,1-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,2,2-Dichlorothane, 1,2,2-Dichlorothane, 1,2,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,2,2-Dichlorothane, 1,2,2-Dichlorothane, 1,1,1,2-Dichlorothane, 1,1,2-Dichlorothane, 1,2,2-Dichlorothane, 1,2,2fetrachicride, Chlorobenzene, Chloroethane, Chloromethane, Benzene, Bromobenzene, Bromochloromithane, Bromomethane, n-Butylbenzene, see-Butylbenzene, tert-Butylbenzene, Carbon 1,2,4-Crimethylbenzene,1,3,5-Tr.methylbenzene, m-Xylene, o-Xylene, p-Xylere

Cary Institute of Ecosystem Studies

Specified Organic Contaminants not cetected:

Alachko, Aldicarb (Temik, Aldicarb sulfone, Alcirarb sulfoxide, Aldrin, Atrazire, Benzofajpyrene, Butachko, Carbaryl, Carbaryl, Carbaryl, Chlordare, ZA-D, 1,2-Dihromo-3-chloropropane, Dicarrba, Dieldrin, D.(2-ethylhexyl)adipate, Di(2-ethylhexter, Dinaseb, Diquat, Endothall, Endrin, Ethylene dincomide (EDB), Chpthosate, Heptachkor, Heptachkor spoxide, Haxachhorbenzene, 3-Hydroxyvarbofuran, Lindane, Merhomyl, Methoxychko, Metolacchko, Metulbuzin, Oxamy, (Tydate), Fentachkorophenol, Feloram, Polychioinated tiphenyls (FCBs), Propactiko, Sinuscine, Towaphene, 2,4,5-TF (Silvesi, 2,3,7,8-TCDE) (Dioxin, Virgl alubide Propactiko, Sinuscine, Towaphene, 2,4,5-TF (Silvesi, 2,3,7,8-TCDE) (Dioxin, Virgl alubide

Unspecified Organic Chemicals not detected:

a-BHC, b-EHC, d-BHC, Jonnard, Tremonenhare, 2-Butanone (MEK), Bufythenzylehthalate, for-buryt eithyl ether, Carfeine, a-Chlordane, Chlorobenzilate, Chloroneb, Chloro Acenspittene, Acenspittivene, Actochlor, Aciflaorien, tert-Amyl methyl ether, Anthracene, Bentason, Benzolobiltuoranthene, 2,4,5-7, Terbacil, Terbuthylazine, Thiobenearb, Trichlorotriffuorocthane (freen), Triffuralin

Footnotes

- USEPA Secondary MOL: IN/SDOH has not set an MOL for this parameter
- 2) Value represents MPCL, which is a level of distributant added for worker treatment that may not be exceeded at the consumer's tap without an unaccentable possibility of adverse health effects. The MPCL is anforcoadale in the same memory as an MOL.
- 5) Determination of MCL violation: If a sample exceeds the MCL a second samplement be collected from the same location within 2 weeks. If the average of the two results exceeds the MCL, then an MCL violation has occurred.
- (4) Action level (not an MCU) measured at the tap. The data presented in this table were collected from sampling stations at the street outb. For at the tap monitoring, see the following table
 - A Largelior Index of less than zero indicates comosive tendencies
 Bandness of up to 3 grains per gallon is considered soft water: between 3 and 9 is moderately
 - Of Fragmess of the U-3 grains per galler is cursicated surviver is an u-sis filled and hard wetter.
- (7) If incr and manganese are present the total concentration of both should not exceed 500 µg/l
 - B) The average for pH is the median value.
 9) Water containing more than 20 mg/L of sodium should not be used for drinking by people or
- expension and the property of the source of
 - 10 Turbidity is ameasure of cloudiness of the variant Turbidity is munitured because it is a good indicator of variant quality and can hinder the effectiveness of disinfection.

- (11) This MGL for unbidity is the morthly average rounded off to the nearest whole number. Data presented are the range and average of monthly averages.
 - (12) The contaminant was cetacted in only one sample. The level found vasible/ow the MQL (13) Though Orthon water was not put into distribution in 2009, DOP monitoring is conducted at (13)
- specified (cations trassed on the potential distribution of the different spuce waters to consumers. As such each system has a darined set of monitoring sizes and the data are reputedly service area.
- (14) USEPC MCLs for HAAS and TTHAs are the calculated quarterly running annual average. Data presented are the range of individual sampling results and the highest quarterly running annual average.
- (15). Ha sample and its repeat sample are both positive for coliform bectaria and one of the two samples is positive for E ord, then an MOL violation has continued.
- (16) INYSDOF has issued a valver for asbestos monitoring in the Grout dwaker System since no actestos coment pipescale used anywhere in the distribution system.
 - (17) Radionuclide data presented ware collected in 2001.

Fighlighted and bolded value indicates a violation or asseedence occurred

Bottled Water Test results, report from the Natural Resources Defense Council: www.nrdc.org

Bottled Water: As Pure as We Are Led to Believe?

- While most bottled water apparently is of good quality, publicly available monitoring data are scarce. The underfunded and haphazard patchwork of regulatory programs has found numerous cases where bottled water has been contaminated at levels above state or federal standards. In some cases bottled water has been recalled.
- Our "snapshot" testing of more than 1,000 bottles of 103 brands of water by three independent labs found that most bottled water tested was of good quality, but some brands' quality was spotty. About one third of the bottled waters we tested contained significant contamination (i.e., levels of chemical or bacterial contaminants exceeding those allowed under a state or industry standard or guideline) in at least one test. This is the most comprehensive independent testing of bottled water in the United States that is publicly available. Moreover, NRDC contracted with an independent data verification firm to confirm the accuracy of our positive test results. Still, the testing was limited. The labs tested most waters for about half of the drinking water contaminants regulated by FDA (to control costs). They found:
 - Nearly one in four of the waters tested (23 of the 103 waters, or 22 percent) violated strict applicable state (California) limits for bottled water in at least one sample, most commonly for arsenic or certain cancer-causing man-made ("synthetic") organic compounds. Another three waters sold outside of California (3 percent of the national total) violated industry-recommended standards for synthetic organic compounds in at least one sample, but unlike in California, those industry standards were not enforceable in the states (Florida and Texas) in which they were sold.
 - Nearly one in five tested waters (18 of the 103, or 17 percent) contained, in at least one sample, more bacteria than allowed under microbiological-purity "guidelines" (unenforceable sanitation guidelines based on heterotrophic plate count [HPC] bacteria levels in the water) adopted by some states, the industry, and the EU. The U.S. bottled water industry uses HPC guidelines, and there are European HPC standards applicable overseas to certain bottled waters, but there are no U.S. standards in light of strong bottler opposition to making such limits legally binding.
 - In sum, approximately one third of the tested waters (34 of 103 waters, or 33 percent) violated an enforceable state standard or exceeded microbiological-purity guidelines, or both, in at least one sample. We were unable to test for many microbial contaminants, such as *Cryptosporidium*, because the logistics and cost of testing for them post-bottling were beyond our means.
 - Four waters (4 percent) violated the generally weak federal bottled water standards (two for excessive fluoride and two for excessive coliform bacteria; neither of the two latter waters were found to be contaminated with coliform bacteria in our testing of a different lot of the same brand).
 - About one fifth of the waters contained synthetic organic chemicals -- such as industrial chemicals (e.g., toluene or xylene) or chemicals used in manufacturing plastic (e.g., phthalate, adipate, or styrene) -- in at least one sample, but generally at levels below state and federal standards. One sample contained phthalate -- a carcinogen that

leaches from plastic -- at a level twice the tap water standard, but there is no bottled water standard for this chemical; two other samples from different batches of this same water contained no detectable phthalate.

- In addition, many waters contained arsenic, nitrates, or other inorganic contaminants at levels below current standards. While in most cases the levels found were not surprising, in eight cases arsenic was found in at least one test at a level of potential health concern.
- For purposes of comparison, we note that EPA recently reported that in 1996 about 1 in 10 community tap water systems (serving about one seventh of the U.S. population) violated EPA's tap water treatment or contaminant standards, and 28 percent of tap water systems violated significant water-monitoring or reporting requirements. In addition, the tap water of more than 32 million Americans (and perhaps more) exceeds 2 parts per billion (ppb) arsenic (the California Proposition 65 warning level, applicable to bottled water, is 5 ppb); and 80 to 100 million Americans drink tap water that contains very significant trihalomethane levels (over 40 ppb). Thus, while much tap water is supplied by systems that have violated EPA standards or that serve water containing substantial levels of risky contaminants, apparently the majority of the country's tap water passes EPA standards. Therefore, while much tap water is indeed risky, having compared available data we conclude that there is no assurance that bottled water is any safer than tap water.
- Other academic and government bottled water surveys generally are consistent with the testing NRDC commissioned. Though usually limited in scope, these studies also have found that most bottled water meets applicable enforceable standards, but that a minority of waters contain chemical or microbiological contaminants of potential concern.

The entire report can be found at: <u>http://www.nrdc.org/water/drinking/bw/appa.asp</u> and contains most bottled water brands. Below is only a sample.

Brand <u>(a</u> <u>)</u>	Tes t #	Water Type	Purchase Location	Source of Water (if listed)				Contam	inant & Le	vel Found	(<u>b)</u>			Number of Bottles Tested	Lab Rep. #	Comments
					HPC Bacteria(c) (Guidelines 500 cfu/ml; no enforceable standard) in cfu/ml	Arsenic(d)) (CA Prop. 65 Level 5 ppb) in ppb	TTHMs(e) (CA & Industry bottled water standard 10 ppb) in ppb	Chlorofor m (CA Prop. 65 Level 10 ppb) in ppb	BDCM(<u>f</u>) (CA Prop. 65 Level 2.5 ppb) in ppb	DBCM (CA Prop. 65 Level 3.5 ppb) in ppb	Phthalate (DEHP) (Tap water standard 6 ppb) no bottled water standard	Nitrate (Fed. & CA standard 10 ppm) in ppm	Other			
Perrier	2	Sparklin g Mineral Water (25 fl oz.)	Los Angeles	Vergeze , France	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte d	Not Detected	2.6	2- Chlorotoluen e found at 3.7 ppb	3 (1 for each contaminant type)	EQI-1- LA 36- LA 38	Chlorotoluen e of unknown origin.
Perrier*	3	Sparklin g Mineral Water (1 liter)	San Francisco	Vergeze , France	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte d	Di(2- ethylhexyl)Phthalat e detected at 12 ppb*	4.3	No detection of 2- Chlorotoluen e	10 (composited)	SA- 712- 0032	Exceeds 6 ppb tap water standard for Di(2- ethylhexyl) phthalate (DEHP), but there is no standard for bottled water for this chemical. California does not allow this DEHP level in the source water for bottled water, but sets no DEHP standard for finished bottled water.
Perrier	4	Sparklin g	San Francisco	Vergeze , France	No test	No test	No test	No test	No test	No test	No test	4.1	No test	10 (composited)	SA- 808-	Nitrate retest.

9

Changing Hudson Project

		Mineral Water													1662	
Poland Spring†	1	Natural Spring Water (1 liter)	Washington , DC		750†	Not Detected	Not Detected	Not Detected	Not Detected	Not Detecte d	Not Detected	Not Detecte d		10 (composited)	298808 -965 (819- 824)	HPC bacteria found at levels exceeding guideline applied by some states to bottled water.
Poland Spring†	2	Natural Spring Water (1 liter)	Washington , DC		5 of 10 bottles tested had HPC bacterial overgrowth †	No test	No test	No test		10 (individually)	298 808- 965 (809- 818)	Bacterial overgrowth was observed in 5 of the 10 bottles tested. The presence number of non-coliform HPC bacteria may be inhibiting the detection of coliform bacteria during the testing. See text for discussion of HPC bacteria.				
Polar	1	Spring Water (1 gallon)	Washington , DC	Crystal Springs, Spring Grove, VT	Not Detected	Not Detected	0.1	0.1	Not Detected	Not Detecte d	Not Detected	0.8	Toluene detected at 2.5 ppb, (well below the standard of 1000 ppb)	10 (composited)	298 808- 965 (851- 856)	Toluene is often an indicator of the presence of gasoline or industrial chemicals, here of unknown origin.
Polar	2	Spring Water (1 gallon)	Washington , DC	Crystal Springs, Spring Grove, VT	Not Detected	No test	No test	No test		10 (individually)	298 808- 965 (841- 850)					

10

Changing Hudson Project

<u>Chemical</u>	<u>Standard</u>	<u>Our Tap</u> <u>Water</u>	<u>Evian</u>	Poland Spring	Shop Rite
Aluminum	.02 mg/L	0.030	0.009	<0.005	<0.005
Barium	2 mg/L	0.024	0.108	0.001	0.004
Chloride	250 mg/L	25	4.5	5	1.5
Nitrate	10 mg/L	0.65	0.74	0.23	0.20
Nitrite	1 mg/L	0.01	0.03	<0.02	<0.02
рН	6.5-8.5	7.62	7.84	6.37	6.26
Total Hardness	- mg/L	92.6	304	48	9
Total Organic Carbon	- mg/L	2.0	<1	<1	<1
Turbidity	0.5 NTU	0.10	0.07	0.05	0.05
Cost Per Gallon	0.10	\$0.0016	\$5.2617	\$3.3690	\$0.5900

This information comes from the Poughkeepsie Water Treatment facility, <u>www.pokwater.com</u> and compares 'our water' with three different bottled water companies.