

Changing Hudson Project

Notes for PowerPoint for Lesson 6 Natural Selection

Slide #	Notes	Additional Notes
1	Before learning about the evolution of cadmium-resistance,	
	students will look at three other examples of evolution by	
	natural selection.	
2		
3	Invisible traits are such things as resistance to cadmium (in	
	mud worms) or chicken pox (in humans). Other examples also	
	include what people sometimes refer to as "bad genes"	
	genes that make one more susceptible to developing things like	
	heart disease, diabetes, or breast cancer.	
4	Two short videos provide a visual model for a natural selection	
	event that occurred in a pocket mouse population in the desert	
	region of the southwestern U.S.	
	This video provides a simple representation of the natural	
5	selection story in one pocket mouse population. The volcanic	
	eruption referred to in the video happened about 1000 years	
	ago.	
	Students often think that the traits an organism "needs" to	
	survive are caused by the environmental change. While the	
	concept of existing variation is fairly easy to understand here	
	because students are familiar with the idea of color variation	
6	(multiple alleles) from their own lives, this understanding often	
	gets lost in unfamiliar cases. Ask students for other examples	
	of existing variation. Ask for examples in plants (e.g. roses),	
	food (e.g. apples), and invisible traits (smell of roses, taste of	
	apples, susceptibility to heart disease in humans).	
7	These four conditions are needed for selection (both natural	
	and artificial) selection to occur:	
	**genetic variation,	
	**the trait must be heritable	
	**differential reproduction &/or survival due to presence of the	
	trait (selective pressure)	
	**time (multiple generations).	
	Students often think that natural selection occurs in individual	
	organisms rather than in a population or species. Natural	
	selection occurs over many generations, not within an	
	individual.	

Г		
8	The next five slides give another example of natural selection	
	in a visible trait: color in beetles.	
	There is existing variation in traits. For example, some beetles	
	are green and some are brown.	
9	There is differential reproduction . Since the environment	
	can't support unlimited population growth, not all individuals	
	get to reproduce to their full potential. In this example, green	
	beetles tend to get eaten by birds and survive to reproduce less	
	often.	
10	The trait is heritable. The surviving brown beetles have brown	
	baby beetles because this trait has a genetic basis.	
	End result: The more advantageous trait, brown coloration,	
	which allows the beetle to have more offspring, becomes more	
11	common in the population. If this process continues,	
	eventually, most or all individuals in the population will be	
	brown.	
12	Over the course of many generations, green beetles have been	
	selected against, and brown beetles have flourished.	
	Students may be familiar with antibiotic-resistant strains of	
	disease organisms such as drug-resistant TB or MRSA	
	(methicillin-resistant Staphlococcus aereus). The evolution of	
	antibiotic resistance occurs through natural selection. Imagine a	
	population of bacteria infecting a patient in a hospital. The	
	patient is treated with an antibiotic. The drug kills most of the	
13	bacteria but there are a few individual bacteria that happen to	
	carry a gene that allows them to survive the onslaught of	
	antibiotic. These survivors reproduce, passing on the gene for	
	resistance to their offspring, and soon the patient is populated	
	by an antibiotic resistant infection — one that not only affects	
	the original patient but that can also be passed on to other	
	patients in the hospital.	
14	At this point, students can review the mechanism of natural	
	selection. Use this as an opportunity to reinforce important	
	concepts before moving on to the evolution Foundry Cove	
	worms. Probe students' explanations to check and correct if	
	necessary, their understanding of concepts such as existing	
	variation; population not individual evolution; and the	
	difference between plasticity and inherited traits.	
15	Review the previous examples with students as necessary.	
16	The next four slides can be used to introduce the Natural	
	Selection Process Diagram in the student handout. Depending	

Cary Institute of Ecosystem Studies

	on your students, you might use the first two slides to show	
	students how the diagram works and then let them finish alone	
	on their own, or you may want to have the class follow along	
	and complete their diagram as you view the four slides.	
17	This shows young Foundry Cove worms before the first	
	introduction of cadmium into their environment. Cadmium-	
	resistant worms make up 5% in this diagram.	
	The students should be sure to answer the questions below the	
	worms before/after each event. These are also on their	
	worksheet20 alive; 5% resistant	
18	Many of the non-resistant adults die without reproducing. In	
	this model, the cadmium kills more than half of the non-	
	resistant worms10 alive; 10% resistant	
	Now the population size increases to twenty, but the proportion	
19	stays the same. Two out of 20 worms (10%) of the second	
	generation are resistant.	
	The second row starts with the surviving adults and their young	
	(from the end of the first row). Once again, cadmium kills	
	more than half of the non-resistant worms. Of the ten surviving	
	adults, two (20%) are resistant. The population size increases	
20	to twenty, but the proportion stays the same, so 4 out of 20	
	worms (20%) of the second generation are resistant.	
	Again, exposure to cadmium kills many worms before they can	
	mature and reproduce. The percentage of cadmium-resistant	
	worms in the third generation has increased to 20%.	
	1) Many muskrats from the area had liver lesions and high	
	levels of cadmium in their kidneys, and there is no	
	evidence that the population was resistant.	
	2) Cadmium may have killed muskrats. It's also possible	
	that another cause unrelated to cadmium, such as disease,	
21	may have reduced their numbers.	
	Evolution is not a solution to toxins in our environment.	
	Resistance to contaminants has been found in very few	
	organisms, while a whole range of detrimental effects of many	
	toxic pollutants are well documented in many species and in	
	many environments.	