

Changing Hudson Project

Name_			Class
	Land Use and	Water Quality Testing Data Shee	et-Streams & Rivers
	Assess a 200 foot segment of	your stream, preferably near where	e the chemical tests are taking place.
Stream width:			
Measure	the stream at three different spo	ots and find an average:	
Water appearar	nce/odor:		
clear	clear-brown	milky	greenish
foamy	muddy		other (describe)
Stream flow:			
Step 1: Stream	segment length		
Measure out a s	specific length of your stream (if i	t is a small stream that is moving ve	ery slowly, you will probably want to use a shorte
length).			
	Stream segment length:	ft	
Step 2: Stream	segment width		
Find the averag	e width of your stream segment at	the top, middle, and bottom end of	f your segment.
_	Width top:		
	Width middle:		
	Width bottom:		
	Average: ft		

Step 3: Stream segment velocity

Using your segment, drop a ping pong ball or a tennis ball (depending on the perceived velocity of your stream-a ping pong ball works better in slower moving water) and record the speed at which the object travels the length of the segment. You should do this at the left, middle, and right side of the stream, and then average your measurements.

Changing Hudson Project

Left side (sec)	Middle (sec)	Right side (sec)	Average
Average of all three			

<u>Step 4:</u> Stream depth. Stretch a tape measure across the stream at the mid-point of your stream segment. At 1 foot intervals across the stream, measure the depth (in feet) and record it in the table below.

on early, measure me depin (in reer) and record in in me						
Distance	Depth		Distance	Depth		
(ft)			(ft)			
0	0		6			
1			7			
2			8			
3			9			
4			10			
5			11			

Sum of depths:	_/ number of samples to	aken =	average depth of sti	ream
<u>Step 5:</u> Flow calculation Now that you have all yo		ly plug in the num	bers in the equation:	
, , , , , , , , , , , , , , , , , , ,	ft (width) x	, ,	(time secs) =	cubic feet/sec

Changing Hudson Project

Ha	hit	nt
riu	ווט	uı

	Many	Some	Few/none
Riffles (fast areas, <2' deep)			
Runs (fast areas, >2' deep)			
Pools (slow areas, >2' deep)			
Glides (slow areas, <2'deep)			
Shelter for fish (logs, stumps etc)			
Patches of aquatic plants			

Substrate size: Rank the substrate sizes from most common (1) to least common (6)

Silt/clay/sand	Sand (up to 0.1")	Gravel (0.1-2")	Cobbles (2-10")	Boulders (>10")	Bedrock (solid rock covering bottom)

<u>Cobble Embeddedness:</u> Pick up several cobbles (if present) to estimate the average embeddedness of your site.

♦ <25 %	 50-75%	>75 %	

Average embeddedness: _____ %

Image from Hudson Basin River Watch Guidance Document

Natural Vegetation: extends beyond the banks for:	< 6 yards	6-12 yards	
(if the 2 banks are different, evaluate both and average	e them)	12-36 yards	>35 yards

Stream banks:

	In no or few areas	In some areas	In many areas
Covered with vegetation			
Eroding			
Mowed			
Artificially protected			

Changing Hudson Project

<u> Human Impacts and Land Use:</u>			
stream channel altered	farms	industry	
storm drain pipes	recreation	housing	
sewage treatment plant pipes	garbage	logging	
dams	mining	roads	
Other:			

For more in-depth survey guidelines, see Behar, S. and M. Cheo. 2004. "Hudson Basin River Watch Guidance Document."