Changing Hudson Project

Name \qquad Class \qquad

Land Use and Water Quality Testing Data Sheet-Streams \& Rivers

Assess a 200 foot segment of your stream, preferably near where the chemical tests are taking place.

Stream width:

Measure the stream at three different spots and find an average: \qquad Water appearance/odor:
\qquad clear \qquad clear-brown \qquad milky
\qquad multi-color
\qquad greenish
\qquad other (describe)
foamy
\qquad muddy

Stream flow:

Step 1: Stream segment length

Measure out a specific length of your stream (if it is a small stream that is moving very slowly, you will probably want to use a shorter length).

Stream segment length: \qquad $f \dagger$

Step 2: Stream segment width
Find the average width of your stream segment at the top, middle, and bottom end of your segment.
Width top: \qquad
Width middle: \qquad
Width bottom: \qquad
Average: \qquad $f t$

Step 3: Stream segment velocity
Using your segment, drop a ping pong ball or a tennis ball (depending on the perceived velocity of your stream-a ping pong ball works better in slower moving water) and record the speed at which the object travels the length of the segment. You should do this at the left, middle, and right side of the stream, and then average your measurements.

Left side (sec)	Middle (sec)	Right side (sec)	Average
Average of all three segments (time in seconds)			

Step 4: Stream depth. Stretch a tape measure across the stream at the mid-point of your stream segment. At 1 foot intervals across the stream, measure the depth (in feet) and record it in the table below.

Distance $(f t)$	Depth	Distance (ft)	Depth
0	0	6	
1		7	
2		8	
3		9	
4		10	
5		11	

Sum of depths: \qquad / number of samples taken $=$ \qquad average depth of stream

Step 5: Flow calculation
Now that you have all your measurements, simply plug in the numbers in the equation:
\qquad ft (length) x \qquad $\mathrm{ft}($ width $) x$ \qquad $f \dagger($ depth $)] \div$ \qquad (time secs) $=$ \qquad cubic feet/sec

Habitat:

	Many	Some	Few/none
Riffles (fast areas, <2' deep)			
Runs (fast areas, $>2^{\prime}$ deep)			
Pools (slow areas, >2' deep)			
Glides (slow areas, <2'deep)			
Shelter for fish (logs, stumps etc)			
Patches of aquatic plants			

Substrate size: Rank the substrate sizes from most common (1) to least common (6)

Silt/clay/sand	Sand (up to 0.1")	Gravel (0.1-2")	Cobbles (2-10")	Boulders (>10")	Bedrock (solid rock covering bottom)

Cobble Embeddedness: Pick up several cobbles (if present) to estimate the average embeddedness of your site.
Average embeddedness: \qquad \%

Image from Hudson Basin River Watch Guidance Document
Natural Vegetation: extends beyond the banks for: \qquad <6 yards \qquad 6-12 yards
(if the 2 banks are different, evaluate both and average them) \qquad 12-36 yards \qquad >35 yards

Stream banks:

	In no or few areas	In some areas	In many areas
Covered with vegetation			
Eroding			
Mowed			
Artificially protected			

Changing Hudson Project

Human Impacts and Land Use:
___stream channel altered
___ storm drain pipes
___ sewage treatment plant pipes
___ dams
___ farms recreation garbage mining
___ industry
_ousing
_oogging
__roads
housing logging roads

Other: \qquad
For more in-depth survey guidelines, see Behar, S. and M. Cheo. 2004. "Hudson Basin River Watch Guidance Document."

