

Level	Notes	Chloride	Conductivity *	Color Code
		Concentration		
Safe		0 mg/L – 49 mg/L	0 μS/cm - 239	Green
			μS/cm	
Harmful to Living	Some biota will	50 -249 mg/L	240 -1279 μS/cm	Yellow
Things	respond to this			
	level of			
	contamination**			
Harmful to	The EPA has set	250 - 999 mg/L	1280 -5179 μS/cm	Orange
Human Health	250mg/L as the			
	max drinking water			
	standard			
Lethal	Lethal to many	≥ 1,000 mg/L	≥ 5180 µS/cm	Red
	freshwater			
	organisms ***			

Salt Pollution Reference Table

* Equation used to convert chloride concentration to conductivity for this table:

Specific conductance = (chloride x 5.2) – 20

This table assumes that the majority of the conductivity in the sample comes from chloride.

** Biota can be affected in "sub-lethal" ways, such as by becoming weaker, failing to develop, not being able to reproduce, not being able to feed (Cowgill and Milazzo, 1990; Anderson, 1948).

*** Effects of chloride on organisms depend on many factors, including dissolved oxygen, temperature, and whether or not the organism is stressed. For example, *Daphnia magna* was able to tolerate higher levels of sodium chloride when dissolved oxygen concentrations were higher; the zooplankton were also able to better tolerate high levels when they had eaten (Fairchild, 1955; Kanygina and Lebedeva, 1957; Biesinger and Christensen, 1972). Salt can accumulate in an organism over time, causing delayed impacts the longer the organism is in the contaminated water body.

<u>References</u>

- Anderson, B.G. 1948. The apparent thresholds of toxicity to *Daphnia magna* for chlorides of various metals when added to Lake Erie Water. Trans. Amer. Fish. Soc. 78:96-113.
- Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals on survival, growth, reproduction, and metabolism of *Daphnia magna*. J. Fish. Res. Board Canada. 29:1691-1700.
- Cowgill, U.M and D.P. Milazzo. 1990. The sensitivity of two cladocerans to water quality variables: salinity and hardness. Arch. Hydrobiol. 120(2): 185-196.
- Fairchild, E.J. 1955. Low dissolved oxygen effect upon the toxicity of certain inorganic salts to the aquatic invertebrate *Dapnia magna*. Louisiana State University Engineering Experiment Station Bull No. 51. 95 pp. (In McKee and Wolf 1963).
- Kanygina, A.V. and M.P. Lebedeva. 1957. The influence of industrial wastes containing sodium chloride on a river water system. Vodosnabzhnie I Sanit. Tekh 1:15 (1957); Chem Abs. 51:9045 (1957); Pub. Health Engineering Abs 37:21 (1957). (In McKee and Wolf 1963).