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Abstract
Heat waves impact a wide array of human activities, including health, cooling

energy demand, and infrastructure. Cities amplify many of these impacts by con-

centrating large populations and critical infrastructure in relatively small areas. In

addition, heat waves are expected to become longer, more intense, and more fre-

quent in North America. Here, we evaluate combined climate and urban surface

impacts on localized heat wave metrics throughout the 21st century across two

emissions scenarios (RCP4.5 and RCP8.5) for New York City (NYC), which

houses the largest urban population in the United States. We account for local

biases due to urban surfaces via bias correcting with observed records and urban-

ized 1-km resolution dynamical downscaling simulations across selected time

periods (2045–2049 and 2095–2099). Analysis of statistically downscaled global

model output shows underestimation of uncorrected summer daily maximum tem-

peratures, leading to lower heat wave intensity and duration projections. High-

resolution dynamical downscaling simulations reveal strong dependency of

changes in event duration and intensity on geographical location and urban density.

Event intensity changes are expected to be highest closer to the coast, where after-

noon sea-breezes have traditionally mitigated summer high temperatures. Mean-

while, event duration anomaly is largest over Manhattan, where the urban canopy

is denser and taller.
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1 | INTRODUCTION

Heat waves caused the second most weather-related fatalities
in the United States in the last decade (National Weather
Service, 2015), with 97 directly attributed deaths per year
between 2008 and 2017 and 107 in 2017 alone. New York
City (NYC) is the most heavily populated city in the United
States, with over 8 million residents, more than double of
the second highest population, Los Angeles. Studies have
shown that longer, more intense heat waves in the United
States are associated with increases in mortality (Anderson

and Bell, 2010), metrics that are projected to increase
throughout the 21st century (Meehl and Tebaldi, 2004). Fur-
thermore, these summertime increases in heat-related mortal-
ity may not be offset by decreases in cold-weather deaths in
Manhattan, New York (Li et al., 2013), the city's most
densely populated borough. Warm weather also increases
energy demand for air conditioning (Le Comte and Warren,
1981; Santamouris et al., 2001; Miller et al., 2008; Ortiz
et al., 2018a), although decreases in winter heating may par-
tially or completely offset the cost of increased cooling
(Rosenthal et al., 1995). Infrastructure and health impacts
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may also occur simultaneously, as was shown for the 2003
NYC city-wide blackout, which saw a 25% increase in non-
accidental deaths (Anderson and Bell, 2012).

In addition, cities interact with the atmospheric boundary
layer by introducing heat source and storage terms into the
surface energy balance (Oke, 1988) and limiting natural
cooling processes (e.g., soil moisture evaporation). These
processes, in general, lead to higher temperatures in cities
compared to surrounding suburban and rural areas, a phe-
nomenon called the urban heat island (UHI). These added
surface energy terms modify the atmospheric boundary
layer, potentially increasing convective motions, elevating
the daytime convective layer and weakening night-time sta-
ble layers. In NYC, the complex nature of its urban land-
scape and its geographical location has historically led to a
spatially and temporally heterogeneous UHI (Gaffin
et al., 2008).

Urban surface–atmosphere feedbacks can exacerbate heat
wave conditions in cities. For example, Li and Bou-Zeid
(2013) found UHI intensification in the Baltimore, MD,
while Ramamurthy et al. (2017) found the NYC UHI
reached up to 10�C during the June 2016 heat wave, both
attributing synergistic interactions between heat waves and
urban surfaces to decreased evaporative cooling over cities.
In the July 3–8, 2010 heat wave in NYC, urban contribu-
tions to afternoon near-surface temperatures were 2�C larger
than on preceding days (Ortiz et al., 2018b), due to a combi-
nation of decreased evaporative cooling, modified wind
speeds, and increased anthropogenic heat. Li et al. (2016)
found enhancement of the Beijing Metropolitan Area UHI
due to wind profile changes during heat waves, similar to
results from Founda and Santamouris (2017), who found
UHI intensification in Athens, Greece to be highly depen-
dent on wind magnitude and direction. Others have found
evidence of UHI intensification during heat waves in Madi-
son, WI (1.8�C daytime, 5.3�C night-time; Schatz and
Kucharik, 2015). However, Scott et al. (2018) showed in a
multi-city, multi-year study that in 70% of the cities
analysed, rural temperatures increased faster than urban tem-
peratures, leading to lower UHI magnitudes during warm
days. This underscores the need for studies of the underlying
land surface processes that determine urban temperatures
during hot days and how they vary across different regions
and urban forms.

Meanwhile, study of climate impacts and development of
future projections has traditionally relied on general circula-
tion models (GCMs), which operate at spatial resolutions of
~100 km. While useful to evaluate global- and even
continental-scale climate impacts, their coarse grid spacing
limits their potential to represent locally significant pro-
cesses due to complex orography, coastlines, and heteroge-
neous land cover (e.g., cities), as well as fine-scale

atmospheric processes (e.g., clouds, convection). Attempts
to overcome these limitations often involve downscaling
techniques to add information at finer scales than GCM
native grids. There are two approaches to achieve this: statis-
tical and dynamical. The former often involves using extra-
neous climatological records to transform coarse GCM
output to more closely match records at specific locations,
often by transforming their distribution. Dynamical down-
scaling uses GCM output as initial and boundary conditions
to a limited area numerical weather prediction system, which
then solves the systems of equations describing the behav-
iour of the land surface and atmosphere. Here, we present
projections based on both a statistically downscaled GCM
ensemble and high-resolution (1-km horizontal grid spacing)
dynamical downscaling to explore temporal and geospatial
variability of heat wave metrics throughout the 21st century.
Our approach aims to incorporate urban surface processes
that may not be adequately represented in GCMs due to lim-
itations in model resolution and parameterizations.

2 | METHODS

2.1 | Heat wave definitions

There is no definite definition of a heat wave, with various
definitions found in the literature addressing the needs of par-
ticular communities. Smith et al. (2013) showed that in the
US Northeast, heat wave days have increased across 15 defini-
tions. Here, we define a heat wave following regional
U.S. National Weather Service in New York, which labels a
heat wave as at least three consecutive days with temperatures
of at least 90�F (32.22�C; National Weather Service, 2018).
Results will use two metrics to describe heat wave
projections:

• Mean heat wave intensity: Mean daily maximum temper-
ature (�C) of all events in a given year.

• Mean heat wave duration: Mean heat wave duration, in
days, of all events in a given year.

2.2 | Observations and GCM ensemble

Observation records within NYC were taken from the
Global Historical Climatological Network (GHCN)-Daily
(Menne et al., 2012) weather stations, specifically at Central
Park, John F. Kennedy Airport (JFK), and LaGuardia Air-
port (LGA). These stations were selected for having long,
mostly uninterrupted measurement periods spanning multi-
ple decades. GHCN-Daily records are quality-checked, but
not homogenized. Although all three stations are located
within NYC city limits, differences in their surrounding land
cover characteristics and distance to the coast impact each
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record's temperatures. For example, Central Park station,
although located within the densely packed borough of Man-
hattan, is surrounded by grass and trees, whereas LGA and
JFK are located close to the north and south shores of
Queens borough (Figure 1, inset), respectively.

Ensemble members used in the single point statistically
downscaled projections belong to the Fifth Climate Model
Inter-comparison Project (CMIP5; Taylor et al., 2012) and are
detailed in Table 1. For each model, we consider daily maxi-
mum temperature from the summers (June–July–August)
between 2006 and 2100. Two scenarios are considered based
on the representative concentration pathways (van Vuuren
et al., 2011), RCP4.5 and RCP8.5, which use a combination
of policy, technology, and demographic projections to esti-
mate global radiative forcing paths. RCP4.5 (Thomson et al.,
2011) is considered a medium emissions scenario, with
increasing global radiative forcing that stabilizes by 2100 at
4.5 W/m2. RCP8.5 (Riahi et al., 2011) is a high emission or
“business as usual” scenario, with increasing radiative forcing
reaching around 8.5 W/m2 by end of century.

2.3 | Statistical bias correction

Mean event duration (days/event) and intensity (event maxi-
mum temperature) were computed using a composite

temperature record based on the daily maximum temperature
averaged across all three urban stations. These stations were
selected due to (a) their proximity to NYC and (b) their long,
consistent records. These historical records were in turn used
to perform bias correction GCM projections following the
work of Piani et al., 2010 and Hawkins et al., 2013. The bias
correction technique corrects for model mean and standard
deviation using a linear model,

TBC= �TObs,REF+
σObs,REF
σGCM,REF

�TGCM,RAW tð Þ− �TGCM,REF
� �

:

Here, T refers to the temperature records and σ refers to
its standard deviation. Subscripts Obs and GCM refer to
observation and model data, respectively, while REF and
RAW refer to the reference (2006–2015) and entire projec-
tion periods (2006–2099). The over bar ( ¯) marker denotes
use of the average for the specified data set and time period.
All three stations used were missing a minimal amount of
data (<2%) which were removed from the record before
computing the mean and standard deviation. Uncertainties in
the projections were quantified by use of a 26-model ensem-
ble. GCM horizontal resolution is often >100 km, so in
many cases there was no grid point that coincides with NYC
city limits. For all models, the geographically closest land
grid point to NYC was used to develop all projections. A
single point is used due to GCMs' generally coarse resolu-
tion, meaning that other grid points might be too distant to
NYC to provide relevant information.

2.4 | Urbanized dynamical downscaling

This work uses the Weather Research and Forecasting
(WRF) model (Skamarock et al., 2008) to study interactions
between cities and the atmosphere during extreme heat
events. Model initial and boundary conditions are derived
from the National Center for Atmospheric Research
(NCAR) bias-corrected Community Earth System Model
(CESM) data set (Monaghan et al., 2014). This data have
been bias-corrected using ERA-Interim reanalysis across all
vertical levels (Bruyère et al., 2014). This bias correction
method decomposes all GCM variables into a seasonal and
trend component and then substitutes the seasonal compo-
nent of the GCM with that of the reanalysis. This approach
was found to improve representation of precipitation, as well
as correcting cooler 2-m temperature biases by 2–3�C.

Simulations use one parent domain at 9-km grid spacing
with two subsequent nested domains, each reducing grid
spacing by a factor of 3, reaching 1-km resolution
(Figure 1). In order to account for processes critical to urban
climate, an urban parameterization is required. In particular,
we use the building effect parameterization (BEP) developed

FIGURE 1 Dynamical downscaling parent (D01) and nested
domains (D02, D03) used in all simulations. Inset shows urban
PLUTO-derived land use classification for D03. Black, red, and blue
circles indicate the location of the Central Park, LGA, and JFK weather
stations [Colour figure can be viewed at wileyonlinelibrary.com]
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by Martilli et al. (2002). BEP is a multi-layer urban canopy
parameterization, possessing an internal coordinate system
that resolves dynamical and energy fluxes between the urban
canopy and the atmosphere. Urban momentum and energy
fluxes are then added to adjacent WRF grid points, modify-
ing thermodynamic and dynamical characteristics of the
atmosphere. BEP represents mechanical impacts of the urban
canopy as sinks in the momentum equation, as well as radia-
tion blocking and reflection between walls and roofs. In
addition to these building surface effects, we include the
building energy model (BEM) from Salamanca et al. (2010).
This parameterization adds building envelope anthropogenic

heat fluxes to BEP by modelling air conditioning demand.
Air conditioning target temperature was set to 24.85�C, with
a target specific humidity of 0.1 gvapor/kgair.

BEP and BEM have also been modified to account for
latent heat fluxes from air conditioning, based on the work
of Gutierrez et al. (2015a) as well as effects of varying
building packing density on drag coefficient (Gutiérrez
et al., 2015b). Cooling towers use evaporative cooling pro-
cesses to remove heat from water used in air conditioning
systems. This evaporative cooling effectively partitions
urban heat fluxes into sensible and latent, adding a hydrolog-
ical component to BEM. Gutiérrez et al., 2015b

TABLE 1 Twenty-six-model ensemble and centre-of-origin used in single point heat wave projections

Centre Model Resolution (lat. × lon.) Selected coordinate (lat., lon.)

Commonwealth Scientific and Industrial Research
Organization: Bureau of Meteorology
(Australia)

ACCESS1.0
ACCESS1.3

1.25 × 1.875�

1.25 × 1.875�
41.25�, −73.125�

41.25�, −73.125�

Canadian Centre for Climate Modeling and
Analysis (Canada)

CanESM2 2.7906�× 2.8125� 40.46�, −73.125�

National Center for Atmospheric Research (United
States)

CCSM4 0.9424 × 1.25� 40.99�, −73.75�

Centro Euro-Mediterraneo per i Cambiamenti
Climatici (Italy)

CMCC-CM
CMCC-CMS

0.7484 × 0.75�

3.7111 × 3.75�
40.79�, −74.25�

40.10�, −73.125�

Centre National de Recherches
Météorologiques/Centre Européen de Recherche
et de Formation Avencée en Calcul Scientifique
(France)

CNRM-CM5 1.4008 × 1.40625� 41.32�, −74.53�

Commonwealth Scientific and Industrial Research
Organization/Queensland Climate Change
Centre of Excellence (Australia)

CSIRO-Mk3.6.0 1.8653 × 1.875� 40.103�, −73.125�

NOAA Geophysical Fluid Dynamics Laboratory
(United States)

GFDL-ESM2G
GFDL-ESM2M

2.0225 × 2�

2.0225 × 2�
41.46�, −73.75�

41.46�, −73.75�

NASA Goddard Institute for Space Studies
(United States)

GISS-CM3
GISS-E2-H
GISS-E2-R

2 × 2.5�

2 × 2.5�

2 × 2.5�

41.0�, −73.75�

41.0�, −73.75�

41.0�, −73.75�

Met Office Hadley Centre (UK) HadGEM2-AO
HadGEM2-CC
HadGEM2-ES

1.25 × 1.875�

1.25 × 1.875�

1.25 × 1.875�

41.25�, −73.125�

41.25�, −73.125�

41.25�, −73.125�

Institut Pierre Simon Laplace (France) IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

1.8947 × 3.75�

1.2676 × 2.5�

1.8946 × 3.75�

40.74�, −75.0�

40.56�, −75.0�

40.74�, −75.0�

Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research
Institute/National Institute for Environmental
Studies/Japan Agency for Marine-Earth Science
and Technology (Japan)

MIROC-ESM
MIROC-ESM-CHEM
MIROC5

2.7906 × 2.8125�

2.7906 × 2.8125�

1.4008 × 1.40625�

40.46�, −73.125�

40.46�, −73.125�

41.32�, −74.53�

Max Planck Institute for Technology (Germany) MPI-ESM-LR
MPI-ESM-MR

1.8653 × 1.875�

1.8653 × 1.875�
40.103�, −73.125�

40.103�, −73.125�

Meteorological Research Institute (Japan) MRI-CGCM3 1.12148 × 1.125� 40.93�, −74.25�

Institute for Numerical Mathematics (Russia) INM-CM4 1.5 × 2� 41.25�, −74.0�
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implemented impacts of building packing density into the
BEP code following results from Reynolds averaged numeri-
cal simulations (RANS) of Santiago et al. (2008), who
related buildings' drag coefficient to their packing density
through a series of experiments, as follows:

Ceq λp
� �

=f3:32λ
0:47
p for λp≤0:29

1:85 for λp>0:29
:

Here, Ceq is the urban canopy sectional drag coefficient
as a function of λp, the building area fraction. This equation
was fitted from the RANS results as a compromise between
accuracy and simplicity; the choice of an empirical equation
cannot be physically interpreted. In order to maximize the
utility of the variable drag formulation, urban canopy param-
eters, including building area fraction and building height,
were ingested into all simulation runs based on the Property
Land-Use Tax-lot Output (PLUTO; Figure 2). PLUTO is a
public data set that includes building physical trait data
including footprint area, number of floors, and use type.
Building heights were computed by assuming a floor height
of 5 m, while building area was approximated by subtracting
non-floor area (e.g., parking) from lot total area. Urban can-
opy parameters were interpolated into the model high-
resolution domain with a horizontal grid spacing of 1 km.
Gutiérrez et al. (2015b) showed that these modifications and
inclusion of high-resolution urban canopy parameters
improved model winds and temperature vertical profiles

when tested over an NYC domain. Tables 2 and 3 summa-
rize the physics parameterizations used in all simulations.

3 | RESULTS

3.1 | Observed changes

As detailed in section 2, NYC houses three weather stations
with at least 50 years of operation. The Central Park weather
station has been in operation since 1869, while the LGA and
JFK records go back as far as 1939 and 1959, respectively.
Summer annual mean daily maximum temperatures, summa-
rized in Figure 3, show increasing linear trends at a rate of
0.11�C/decade for Central Park and 0.13�C/decade for LGA,
significant at p < .01, while JFK increases at 0.13�C/decade
(not significant at p < .01). JFK median temperatures are

FIGURE 2 Building plant area fraction (left) and building height (right) parameters used in all simulations. Data are aggregated at 1-km grid
spacing before ingesting into the urban WRF model [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Model configuration used for all WRF simulations

Parameter Value

Spin-up (days) 4

Time step
(seconds, D01,
D02, D03)

45, 15, 5

Domain size (grid
points)

85 (north–south), 82 (east–west)

SST update Daily

Simulation period Jun 1 to Aug 31 (plus spin-up)

Note: Values are presented for domain D03, unless otherwise specified.
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cooler than Central Park and LGA by ~1�C due to south/-
southwesterly sea-breeze typical to the area (Gedzelman
et al., 2003). Sea-breeze patterns have been shown to be an
important factor in the formation and daily cycle of the NYC
UHI. Studies have found that on days when a sea-breeze
develops, UHI formation is delayed, with its centre pushed
towards the northwest of the city and neighbouring New Jer-
sey. At night, a land breeze forms, moving the UHI centre
closer to the southeast coastline.

Heat waves in NYC are defined as at least 3 days with
temperatures reaching at least 90�F (32.22�C). Station
records show that the likelihood of temperatures exceeding
the heat wave threshold are somewhat low, leading to non-
significant trends in heat wave frequency, duration, and
intensity (Table 4).

3.2 | Global model ensemble projections

Applying the bias correction technique outlined in section 2
(Hawkins et al., 2013) to downscale each model in a
26-member ensemble reveals large cool biases in raw GCM
output for NYC daily maximum records. We use kernel den-
sity estimates of daily maximum temperature for each
ensemble member to quantify the impact of the statistical
downscaling technique on mean and standard deviation sta-
tistics. As shown in Figure 4, models without bias correc-
tion, in general, underestimate observations on average by
2.7�C. This may be in part due to NYC's close proximity to
the ocean, which may be included in some of the GCM's
grid cell area. The statistical downscaling technique modifies
the distribution of each ensemble member to more closely
match that of the station observations. In addition, inter-
model spread in mean and standard deviation is reduced dur-
ing the reference period.

Bias-corrected mean daily maximum temperature
(Figure 5a) shows a nearly linear trend in the high emissions
scenario (RCP8.5), whereas rate of change in the stabiliza-
tion scenario (RCP4.5) slows after 2040. RCP4.5 shows a
linear trend of 0.3�C/decade, while RCP8.5 grows at a rate
about three times faster, 0.69�C/decade. Model spread,
quantified as 95% confidence intervals, become slightly
wider towards the latter half of the century, covering a range
of <1�C, while the band is closer to 0.5�C in the first half.
At least a fraction of these observed long-term increases
may be due upstream urbanization in New Jersey throughout
the 20th century, as transitioned from agrarian land use to
urban and suburban (Wichansky et al., 2008). Zhang et al.
(2009) showed that upstream urbanization may intensify
UHI magnitude. He showed that for the city of Baltimore,
MD, upstream urbanization accounted for up to 25% of the

TABLE 3 Model physics parameterizations used throughout all
numerical experiments

Parameterization Option
Active
domain

Cumulus Kain-Fritsch (Kain, 2004) D01, D02

Microphysics WSM6 (Hong and Lim, 2006,
p. 6)

D01, D02,
D03

Boundary Layer Mellow-Yamada-Janjic
(Nakanishi and Niino,
2006)

D01, D02,
D03

Land Surface Noah Land Surface Model
(Tewari et al., 2004)

D01, D02,
D03

Urban Physics BEP (Martilli et al., 2002)
BEM (Salamanca et al., 2010)
Cooling Tower (Gutiérrez et
al., 2015a)

Urban Drag Coefficient
(Gutiérrez et al., 2015b)

D03

FIGURE 3 Annual daily maximum temperature trends from the Central Park (40.78 N, 73.97 W), LaGuardia (40.78 N, 73.89 W), and John
F. Kennedy (40.64 N, 73.76 W) Airports. Box plots show distribution of annual mean maximum temperatures for the overlapping period recorded
by all three stations (1959–2017). Boxes' lower and higher bounds represent each record's 25th and 75th percentiles, with centre lines showing its
median. Lower and upper whiskers represent data lower and higher than 1.5 times the interquantile range. The map shows each station's
geographical location [Colour figure can be viewed at wileyonlinelibrary.com]
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UHI magnitude. Meanwhile, uncorrected projections
(Figure 5d) indicate similar increases in rate, albeit with a
cooler ensemble mean. Differences between the two are
larger in RCP8.5, where they grow from close to 3.25 to
nearly 4.5�C by end of century, whereas in RCP4.5, their
difference only changes by less than 0.5�C (Figure 5g).

Bias-corrected mean intensity, defined as the mean of
event maximum temperatures in a given year (Figure 5b),
grows at a rate nearly 0.3�C (RCP8.5) per decade, while the
uncorrected record (Figure 5e) grows at 0.1�C/decade,
nearly three times slower. RCP4.5 projections show a simi-
lar relationship between corrected and uncorrected records,
although in general smaller, with 0.9 (corrected) to 0.3�C
(uncorrected) per decade. Differences in ensemble mean
(Figure 5h), however, grow larger over time between the
two scenarios, with RCP8.5 and RCP4.5 being up to 2.5 and
1�C, respectively, over their uncorrected counterparts. Mean
event duration projections (Figure 5c) are similar across

RCP4.5 and RCP8.5 up to the 2040s decade, similar to event
intensity projections. Accelerating growth in projections of
the latter half of the century are coupled with considerable
increases in inter-model spread, with a 90% confidence band
spanning ~10 days, compared to about 2 days in the first
half. Average event duration in RCP8.5 grows from 5 days
to over 25 days by end of century, with RCP4.5 growing
from 5 to 7 days per event. This is due to both usage of a
limited window for events to happen (i.e., June–July–
August) as well as a constant temperature threshold for heat
wave events. As mean daily temperatures surpass 32.22�C
by the late 2050s, the likelihood of any given day surpassing
this temperature increases. This might lead to separate events
“coalescing” into longer lasting heat waves. It also explains
why changes in this metric are much lower in uncorrected
data (Figure 5), as temperatures are less likely to reach the
heat wave threshold. These results compare favourably with
the 35-model ensemble used in the 2015 New York City
Panel for Climate Change analysis (Horton et al., 2015),
which only corrects for the mean of the temperature distribu-
tion (i.e., the delta method). However, when correcting for
the standard deviation as well, end of century heat waves in
RCP8.5 are both longer, and hotter.

The bias correction technique to downscale temperatures
from GCM to local scale reduces differences between obser-
vation records by reducing biases in both the mean and vari-
ance of the model. Applying the technique to each model in
the 26-member ensemble results in a reduction, in general,
of inter-model spread, as all models are downscaled to the
same historical record. This reduction does not hold for
event duration, perhaps due to the uncertainty of event
timing in addition to daily maximum temperatures involved
in this metric. Another limitation of this approach is the
assumption that the relationship between observations and
GCM output will remain stationary for the entire projection
period (Dixon et al., 2016), which might not account for
feedback processes such as additional anthropogenic heat
and soil desiccation or moistening.

To partially address some of these limitations, we con-
ducted a set of simulations using a state-of-the-art high-
resolution urbanized regional climate model. This model
depends on formulations of physical processes including
many of the urban surface–atmosphere feedbacks that may
modify heat wave conditions, rather than statistical relation-
ships developed a priori or assumptions about the
stationarity of bias correction parameters. These assumptions
are particularly relevant for projections in NYC as it has
been shown that the stationarity assumption may be violated
in coastlines and especially in warm projections (Lanzante
et al., 2018), where grid cells may contain water, which in
turn modifies near-surface temperatures.

FIGURE 4 Kernel density estimate (KDE) of 26 model, two-
scenario ensemble before (blue) and after (red) histogram matching
bias correction. Black curve represents airport observations KDE
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Yearly trends of heat wave metrics in NYC

Trend
(1900–2017)

p
value

Heat wave frequency (events per
year)

.0059 .76

Mean heat wave duration (days per
event)

.0036 .27

Mean heat wave intensity (�C) −.0017 .56

Note: Trends are based on records from Central Park GHCN daily data from
1900 to 2017.
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3.3 | High-resolution urbanized simulations

High-resolution regional climate models have been used to
improve representation of precipitation and temperature (Antic
et al., 2004; Miller et al., 2008; El-Samra et al., 2017; Hughes
et al., 2017; Garuma et al., 2018), especially in locations where
complex surface processes are significant (e.g., mountains, coasts,
and cities), although some studies have found geographically
inconsistent accuracy improvements (Wang and Kotamarthi,
2015). In addition, high-resolution dynamical downscaling

methods have been used to derive projections of extreme events,
such as heat waves (Gao et al., 2012). Here, we employ advances
in the representation of urban physics in the WRF model to pro-
ject heat wave metrics throughout NYC. Our simulation approach
focuses on three time periods representing contemporary
(2006–2010), mid-century (2045–2049), and end of century
(2095–2099) across the RCP4.5 and RCP8.5 scenarios.

Evaluating model output against weather station data
(Central Park, LGA, and JFK) for the contemporary period

FIGURE 5 Daily maximum temperature and heat wave metric projections for NYC. Top row shows bias-corrected projections of daily
maximum temperature (a), mean heat wave intensity (b), and mean heat wave duration (c). Centre row (d–f) shows the same metrics from
uncorrected data, with the bottom row (g, i) showing the difference of the two. Solid blue and red bands indicate the 26-model ensemble mean, with
shaded bands representing bootstrapped 95% confidence intervals. Grey dashed lines (a, d) show the temperature threshold for heat waves [Colour
figure can be viewed at wileyonlinelibrary.com]
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(2006–2010) reveals that WRF-simulated daily maximum
temperature improves on the input bias-corrected Commu-
nity Earth System Model (BC-CESM1) input data in both
model mean and standard deviation (Figure 6a). Observa-
tions reported a mean daily maximum of 28.41�C with a
standard deviation of 3.69�C. WRF simulations results,
interpolated to weather station locations using nearest neigh-
bour, showed a mean daily maximum of 28.66�C (0.25�C
error) with a 3.37�C standard deviation (0.32 error), whereas
BC-CESM1 showed a 26.54�C mean (1.87�C error) and
2.87�C standard deviation (0.82�C% error). These results are
consistent with other studies (Bruyère et al., 2014), which
found reduced cold biases in near-surface temperature distri-
butions when forcing WRF with bias-corrected climate data.

On the other hand, mean daily minimum temperatures
(Figure 6b) are overestimated by both BC-CESM1 and
WRF simulations by 1.38 and 2.54�C, respectively. WRF
simulations, however, improve on standard deviation, with
an error of 0.04�C, while in BC-CESM1 the error reaches
0.31�C. Both WRF and BC-CESM1 reproduce the Weibull
distribution of the 10-m winds. However, WRF underesti-
mates calm wind conditions (<5 m/s), while slightly over-
estimating wind speeds >6 m/s compared to BC-CESM1.
WRF does capture extreme wind conditions, with BC-
CESM only reaching a maximum of 10 m/s, whereas WRF
reaches up to 18 m/s, closer to the observed maximums
of 22 m/s.

Limitations in BC-CESM1 are, in part, inherent to its coarse
horizontal resolution (0.94 latitude × 1.24 longitude, ~100 km
near NYC). Locations near the coast are especially vulnerable
to these limitations, as a grid cell's area of influence includes
both land and water, impacting its ability to reproduce observed
temperature variance (Lanzante et al., 2018).

Mean heat wave intensity (Figure 7, left) projections
show, in general, larger increases closer to the coast com-
pared to inland locations. In the RCP4.5, heat wave intensity
peaks in the mid-century period, with most of the city
experiencing increases between 0 and 3�C. Increases are
largest over the southeast part of the city, suggesting a weak-
ening of the afternoon sea-breeze (Figure 8) that would typi-
cally keep this location cooler, as seen from the JFK station
records (Figure 3). By end of century, meant event intensity
ranges between 0.5 and 2�C, following a similar geographi-
cal pattern. In RCP8.5, event intensity increases throughout
the century, with the largest anomalies observed in the latter
half, similar to results in the statistically downscaled projec-
tions. Here, however, intensity anomalies range from
2 to 5�C.

As shown in Figure 8, simulations show an overall reduc-
tion in wind speeds. During the 10% coolest days, wind
direction distribution is fairly similar, with southeast and
southwesterly winds flow being the most common, albeit
with an end of century reduction from 2.0–3.2 to 1.2–-
2.8 m/s. During the 10% warmest days, end-of-century wind
directions exhibit a shift closer to southwesterly flows,
potentially due, in part, to increased urban–rural temperature
gradients. Warm days also show a similar wind speed reduc-
tion as in the 10% coolest days, marking an overall weaken-
ing of flow over the city, which may lead to increased UHI
magnitudes as shown by previous studies (Li et al., 2016;
Founda and Santamouris, 2017).

Mean event duration (Figure 7, right) anomalies display
an almost opposite geospatial gradient compared to event
intensity, with larger increases over Manhattan (west part of
the city). In RCP4.5, events are projected to last 1–3 days
longer than the contemporary period across both mid-

(b
(a) (b) (c)

FIGURE 6 Distribution of modelled and observed (a) daily maximum temperatures, (b) daily minimum temperatures, and (c) daily average
wind speed in NYC between 2006 and 2010. Distributions are represented by kernel density estimates of daily maximum temperature. Observations
belong to the Central Park, JFK, and LGA Global Historical Climatology Network (GHCN) stations. BC-CESM1 refers to CESM1 bias mean-
corrected data set used as initial and boundary conditions in the high-resolution simulations, where the closest land grid point to NYC was used.
WRF refers to simulated dynamically downscaled data from grid points closest to the three weather stations [Colour figure can be viewed at
wileyonlinelibrary.com]
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century and end of century, albeit with shifts in the location
of the maxima. In RCP8.5, the mean event duration follows
a similar geospatial pattern between mid-century and end of
century as that of RCP8.5, reaching more than seven addi-
tional events. However, as in the single point projections,
“coalescing events” are more likely to occur in RCP8.5.
Excess heat wave days in densely packed parts of the city
suggest that as summers become warmer, heat stored in
buildings may play a role in extending event duration. In
particular, lack of evapotranspiration due to impervious sur-
faces as well as heat storage in built structures may extend
heat wave conditions heterogeneously throughout the city,
coupled with increased anthropogenic heat from air condi-
tioning. This heterogeneity is particularly important due to
geographical differences in socioeconomic status of resi-
dents, translating to a difference in risk of heat impacts to
health.

Studies have shown that water vapour content of air, in
addition to ambient temperature, regulates the ability of

humans to cool down via evaporation of sweat (Malchaire
et al., 2000). Simulated projections of water vapour mixing
ratio changes (Figure 9a) appear to be sensitive to distance
to the coast, as sea-breeze circulations bring moist ocean air
to the city. Moreover, air conditioning systems contribute a
portion of anthropogenic heat through evaporative cooling,
further increasing atmospheric water vapour. Modelled
changes increase with distance to the southern Long Island
coastline, since warm air is able to hold more water, and this
leads to increases in atmospheric water vapour. In the
medium emissions scenario (RCP4.5), water vapour
increases range between 0 and 14% across simulations
2045–2049, increasing to 6–18% by 2095–2099. In RCP8.5,
mid-century changes are less than 4%, but balloon to
24–30% by end of century. The water vapour increases at
the end of the century are larger closer to the coast poten-
tially due to increased evaporation over the ocean.

Relative humidity, which measures the saturation of the
atmosphere to water vapour, is projected to increase in all

FIGURE 7 Dynamically downscaled median event intensity (left) and duration (right) for NYC. Anomalies are computed based on
simulations of 2006–2010 summers (JJA) [Colour figure can be viewed at wileyonlinelibrary.com]
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simulation periods and scenarios, except in end of century
RCP8.5 (Figure 9b). This decrease indicates that capacity of
air to carry water vapour, a function of temperature, is
increasing at a faster pace than vapour is being added.

4 | CONCLUSIONS

Use of dynamical downscaling techniques accounts for sta-
tistical methods' shortcomings by improving resolution, and
thus representation of heterogeneous urban surfaces, as well
as inclusion of urban-specific processes. However, these
new methods are computationally intensive, limiting the fea-
sibility of multi-model, full-year ensembles, which are useful
to better quantify projection uncertainties. Additionally,
there are uncertainties in the temporal change of urban
parameters such as land cover, building height, or building
technology (e.g., higher air conditioning efficiency and
improved thermal performance), which might modify
urban–atmosphere interactions.

Lack of detailed information on parameters such as air
conditioning adoption throughout the city and even building

occupancy schedules may also impact anthropogenic heat
fluxes, necessitating partnerships with stakeholders at the
building and city levels. As cities become more aware of
upcoming challenges, however, they have started to enact
laws to collect this information. One such example in NYC
is “Local Law 84 of 2009,” which mandates reporting of
energy end use by buildings above certain loads. Research
tools have also started to address these issues, as in the work
of Xu et al. (2018), which introduces a “cooled fraction”
parameter to BEM simulations.

Another limitation of this study is the assumption of a
static urban canopy; no urban densification or impacts of
population shifts are included. These limitations may be
addressed with the use of city land cover and building pro-
jections, in turn highlighting the need for engagement with
policymakers. Krayenhoff et al. (2018) offers a recent exam-
ple of this approach, finding a geographically varying
nonlinear relationship between urban expansion and global
climate change signals throughout the United States. Tech-
niques such as cellular automata models of urban land cover
sprawl (Clarke et al., 1997; Li and Yeh, 2002; Mitsova
et al., 2011) may be incorporated into high-resolution

FIGURE 8 Wind rose plots for
selected grid points in Brooklyn,
NY. Bar length represents normalized
wind direction frequency, while colour
map indicates wind speed magnitude
[Colour figure can be viewed at
wileyonlinelibrary.com]
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simulations, as well as projections of building technology
change to account for increases in cooling technology effi-
ciency. Urban expansion and densification has been shown
to contribute to local warming, in some instances, as much
as warming associated with global climate change, as studies
in Paris (Lemonsu et al., 2015), Japan (Adachi et al., 2012),
Arizona (Georgescu et al., 2012), and Sydney (Argüeso
et al., 2014) have shown, as does upwind urbanization
(Zhang et al., 2009).

Atmospheric water vapour projections showed overall
increase across all scenarios and RCPs. However, future
temperature increases in the dynamically downscaled
CESM1 RCP8.5 scenario lead to higher capacity of air to
hold water vapour, leading a decrease in relative humidity.
This decrease may have considerable health impacts, as skin
evaporative cooling via perspiration may not be as inhibited
as in RCP4.5 and mid-century RCP8.5. These results do not
imply, however, less risk of heat-related mortality, as

RCP8.5 still has large temperature increases compared to
other scenarios.

The approach presented here provides useful insights on
the interplay between regional and local climate and the
potential for localized intensification of extreme heat. These
insights may be useful for city-level stakeholders for plan-
ning of adaptation strategies for health and energy and may
serve as a template for projections of extreme heat metrics
for other cities.
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