
Ecological Applications, 21(5), 2011, pp. 1443–1460
� 2011 by the Ecological Society of America

Data–model fusion to better understand emerging pathogens and
improve infectious disease forecasting

SHANNON L. LADEAU,1,5 GREGORY E. GLASS,2 N. THOMPSON HOBBS,3 ANDREW LATIMER,4 AND RICHARD S. OSTFELD
1

1Cary Institute of Ecosystem Studies, Millbrook, New York 12545 USA
2Johns Hopkins School of Public Health, Department of Molecular Microbiology and Immunology, Baltimore, Maryland 21205 USA

3Colorado State University, Natural Resource Ecology Laboratory and Graduate Degree Program in Ecology,
Fort Collins, Colorado 80524 USA

4University of California, Department of Plant Sciences, Davis, California 95616 USA

Abstract. Ecologists worldwide are challenged to contribute solutions to urgent and
pressing environmental problems by forecasting how populations, communities, and
ecosystems will respond to global change. Rising to this challenge requires organizing
ecological information derived from diverse sources and formally assimilating data with
models of ecological processes. The study of infectious disease has depended on strategies for
integrating patterns of observed disease incidence with mechanistic process models since John
Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and
vector-borne diseases increasingly affect human populations, and methods used to successfully
characterize directly transmitted diseases are often insufficient. We use four case studies to
demonstrate that advances in disease forecasting require better understanding of zoonotic host
and vector populations, as well of the dynamics that facilitate pathogen amplification and
disease spillover into humans. In each case study, this goal is complicated by limited data,
spatiotemporal variability in pathogen transmission and impact, and often, insufficient
biological understanding. We present a conceptual framework for data–model fusion in
infectious disease research that addresses these fundamental challenges using a hierarchical
state-space structure to (1) integrate multiple data sources and spatial scales to inform latent
parameters, (2) partition uncertainty in process and observation models, and (3) explicitly
build upon existing ecological and epidemiological understanding. Given the constraints
inherent in the study of infectious disease and the urgent need for progress, fusion of data and
expertise via this type of conceptual framework should prove an indispensable tool.
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INTRODUCTION

The need to understand and predict the timing and

intensity of outbreaks of infectious disease has existed

since humans first clustered around common resources.

In the 19th century, John Snow (1855) systematically

traced cholera mortalities to a shared London water

pump in what is now often recognized as the first

published epidemiological study (Evans 1976). At the

time, Snow and his contemporaries were largely

unaware of the ecological dynamics that led naturally

occurring aquatic bacteria (Vibrio cholerae) to cause

epidemic disease. Snow used scientific inquiry based on

observations and an implicit spatiotemporal clustering

model to demonstrate a connection between cholera

cases and water supplies. Today we know that V.

cholerae occurs naturally in copepod hosts across many

aquatic environments (Colwell 1996) and that the

ecology of these copepod communities is an essential

component of managing and forecasting cholera epi-

demics in humans (Lipp et al. 2002, Colwell et al. 2003).

From its inception, the formal study of infectious

disease has depended on strategies for integrating

theoretical process models with patterns of observed

disease incidence. The availability of data and advances

in technology in just the past few decades have greatly

enhanced our ability to evaluate the ecological dynamics

of infectious disease (e.g., Glass et al. 2000, Miller et al.

2006, Ostfeld et al. 2006) and have fostered tremendous

progress in dynamic modeling of disease processes

(Ferguson et al. 2001, Bjornstad et al. 2002, Grenfell

et al. 2002, Keeling et al. 2003, Ferrari et al. 2008, Smith

et al. 2008, He et al. 2010). However, even with the

extraordinary advances in data availability, computa-

tional power, and algorithms for stochastic modeling,

fusing data with mechanistic understanding in ways that
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allow for forecasts in advance of epidemics remains a

major challenge (Ostfeld et al. 2005, Kitron et al. 2006,

Glass 2007), and is especially problematic in the case of

emergent infectious diseases.

Emerging infectious diseases (EIDs) are caused by

pathogens that have been newly identified (e.g., human

immunodeficiency virus [HIV], severe acute respiratory

syndrome [SARS], Lyme disease, H5N1 influenza), have

undergone range expansions into naı̈ve populations

(e.g., West Nile virus, Dengue fever), or have evolved

into more virulent or drug resistant strains (e.g., drug-

resistant malaria and tuberculosis) (Woolhouse and Dye

2001). Several recent studies have demonstrated that

reported EIDs have increased in recent decades and that

a majority of EIDs are zoonotic (vertebrate reservoir)

and vector-borne (Taylor et al. 2001, Wilcox and Gubler

2005, Jones et al. 2008). Following declines in the mid-

20th century, mortalities in the United States attributed

to infectious diseases began to rise in the 1980s, an

increase that has been blamed on the spread of HIV and

related infections (reviewed by Greger 2007). It is likely

that exponential growth of the human population and

human resource consumption (Daszak et al. 2000),

globalization of travel and trade (Karesh et al. 2005),

and changes in climate (Pascual and Bouma 2009) have

already and will continue to facilitate this rise in EIDs.

Here we discuss approaches for integrating the

information in data with the biological understanding

in process models, paying particular attention to how

data–model assimilation can advance understanding of

infectious disease. We use a case study approach to

examine data–model assimilation in vector-borne and

zoonotic diseases affecting humans and present a

conceptual modeling framework to support ecological

disease research and generate forecasts of pathogen

amplification and persistence in the environment, as well

as human disease risk.

OVERVIEW OF DISEASE MODELING AND MODEL

DATA FUSION

There is an inherent paradox in modeling epidemics.

Models that can guide control efforts are most useful

early in the course of an outbreak, when the data are

most sparse (Matthews and Woolhouse 2005). If the

models are effective in supporting wise choices of

interventions that reverse the trajectory of infection,

then data remain sparse. Thus, assimilation of data with

models of disease outbreaks must be able to generate

insight from limited data.

Pathogen transmission is the critical process behind

disease outbreaks. Pathogen transmission involves the

interaction of at least two organisms (Fig. 1) and is

inherently a spatiotemporal process (Antolin 2008). It is

also a process that cannot be directly observed.

Unobservable processes are difficult to model because

estimation of latent parameters relies on our ability to

accurately relate them to quantities that can be

measured. Available data are often discrete, while the

underlying processes are continuous in nature.

Numerous approaches have been employed to estimate

transmission rates and predict disease intensity from

observed disease incidence (i.e., successful transmission

events for a fixed spatial and temporal interval). A

majority of advances in understanding infectious dy-

namics have been made in endemic diseases with direct

human-to-human transmission because data and under-

standing of human population dynamics are generally

available (Anderson and May 1992, Bolker and Grenfell

1995, Bjornstad et al. 2002, Ferrari et al. 2008, He et al.

2010). Systems that include zoonotic reservoir hosts and

vector transmission are more complex than directly

transmitted human diseases and require some under-

standing of the ecological dynamics controlling host and

vector populations, as well as the factors that influence

disease incidence (Yates et al. 2002, Ostfeld et al. 2006,

Begon et al. 2009). Sick animals are not easily studied in

their natural environment and the historical time series

that have supported many advances in infectious disease

research (e.g., Anderson and May 1992) do not exist for

wildlife populations or for newly emergent diseases.

Researchers have generally focused on either model-

based (predominantly mathematical simulation) or data-

based (with statistical hypothesis testing) approaches to

develop understanding and generate predictions of

ecological dynamics (Hobbs and Hilborn 2006), includ-

ing disease incidence. Dynamic compartmental models,

a common model-based approach in epidemiology,

employ a linked system of differential equations to

represent susceptible, exposed, infected, and recovered

states (i.e., SEIR) in order to characterize transmission

and disease progression in host populations (Anderson

and May 1992). Data are not generally integrated

formally with these mathematical process equations,

instead critical parameter estimates are derived from

other analyses and plugged into the model. Researchers

FIG. 1. Human disease systems involving (a) vector-borne
(e.g., malaria), (b) zoonotic, and (c) vector-borne zoonotic
pathogens. Lines denote pathogen transmission. Double-ended
arrows denote bidirectional transmission. In panel (b), humans
are infected through direct contact with wild or domestic
animals and do not generally reinfect these reservoir hosts but
may be infectious to other humans (i.e., severe acute respiratory
syndrome [SARS]). In the system depicted in panel (c), humans
are not important to pathogen persistence or transmission but
may be infected if exposed to the vector (i.e., Lyme, West Nile
virus [WNV]).
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use model simulations to predict incidence ‘‘data’’ that

can be compared to observed data.

A primary goal of compartmental modeling in

epidemiology is estimation of the basic reproductive

number, R0, the number of new infections created by a

single infected individual in a wholly susceptible

population. Theoretically, an epidemic can only proceed

if R0 is greater than 1 (Anderson and May 1985). The

parameter estimates that characterize disease trans-

mission can be adjusted to explore how changes in these

rates alter the probability that an epidemic will occur as

well as its probable duration. Dynamic compartmental

models can be valuable tools for assessing the relative

importance of critical rates and have been crucial for

evaluating vaccination strategies (Anderson and

May1985) and controlling emerging human epidemics

such as SARS, which we review later. The mathematical

structure reflects several underlying biological assump-

tions, including the nature of transmission and the

constancy of rate parameters in time and space. When

these assumptions are not correct then the resulting R0

values can be off by orders of magnitude (e.g., Wonham

et al. 2006). Limitations associated with mathematical

modeling of infectious transmission have been reviewed

elsewhere (e.g., Wearing et al. 2005). These models can

be very powerful if the biological processes are well

defined and demographic and environmental stochastic-

ity are either well-characterized or unimportant for

meeting the goal of the research (Hohle et al. 2005,

Britton and Lindenstrand 2009, He et al. 2010).

However, capturing the stochasticity is especially

important when the research goal is to forecast the

timing and intensity of disease outbreaks. Recent ‘‘plug-

and-play’’ methods use simulations from flexible classes

of compartmental models to generate understanding of

complex interactions and stochasticity in dynamic

systems (Ionides et al. 2006, He et al. 2010), but

currently are applied to understanding direct (human)

transmission processes with relatively rich data.

Dynamic compartmental modeling may be particularly

limited when data are sparse and biological under-

standing poor, especially when forecasting infectious

dynamics of vector-borne and zoonotic disease systems

is the goal.

Data-based or phenomenological modeling of disease

incidence has strengths and weaknesses complementary

to dynamic mathematical models. Advances in remote

sensing have greatly increased the amount and scale of

data available to characterize environmental variables

that can influence the timing and location of disease

outbreaks (Kitron et al. 2006). Observed disease

incidence (or host or pathogen abundance) can be

readily compared to a suite of variables representing

habitat type (Xiao et al. 2007, Brown et al. 2008),

climate (Brownstein et al. 2003, Xiao et al. 2007), and

dispersal pathways (Kilpatrick et al. 2006a). These data-

based methods can certainly capture the heterogeneity in

population abundance and infection dynamics, but may

not have enough biological integrity to extend beyond

the unique time and place in which data were collected.

Phenomenological models tend to rely on the assump-

tion that the abiotic features measured actually deter-

mine disease incidence. When the disease is in the

process of expanding in range, the abiotic conditions

that match its current range might represent only a small

subset of those that permit its existence. Thus, the

potential for these types of approaches to provide

accurate or useful forecasts of disease incidence relies

on how well they capture the underlying biological

processes that determine transmission rates, which can

be difficult to evaluate. Still, phenomenological model-

ing has undoubtedly provided important insight into the

distribution and spread of infectious disease and can be

instrumental in defining the broad realm of possible

interactions and hypotheses (Kilpatrick et al. 2006a,

Xiao et al. 2007, Peterson and Williams 2008).

Forecasting disease outbreaks must be driven by

biological understanding of the processes that determine

pathogen transmission. When that understanding is

limited and mechanistic data are sparse, such as is often

the case with EIDs, efficient data–model integration to

support inference and forecasting is crucial. Methods for

assimilating data with models of infectious disease are

dominated by likelihood approaches. Likelihood based

approaches quantitatively evaluate data support for

specific hypotheses and are important data–model

assimilation tools in ecology (Hobbs and Hilborn

2006). Bayesian methods are increasingly applied;

especially when ecological complexity is high and

forecasting is a primary goal (Clark 2005). Hierarchical

modeling (using either Bayesian or maximum likelihood

methods) is gaining prominence across ecological

disciplines (Clark and Gelfand 2006, Gelman and Hill

2007, Cressie et al. 2009).

A hierarchical (sometimes referred to as multilevel )

model structure defines how information is shared

across sampling units and processes. Although it is not

yet widely used in disease ecology, this approach is

particularly attractive because it allows researchers to

accommodate important differences (e.g., among

groups, individuals, or regions) while still allowing for

shared characteristics ( Clark et al. 2005, Cressie et al.

2009, Qian et al. 2010). Additionally, when the

hierarchical structure is built around a conditional

modeling framework (i.e., Bayesian or likelihood based)

then multiple datasets and processes can be combined in

a common analysis (LaDeau and Clark 2006, Clark

et al. 2007). State-space models, which may also be

hierarchically structured, are becoming standard for

portraying population dynamics (Tavecchia et al. 2009,

Wang 2009), but they have not been widely applied in

modeling infectious diseases (Baadsgaard et al. 2004, He

et al. 2010). The state-space approach to modeling

populations can be described as the nesting of two

models; an observation equation that relates the

observed data to the unobserved but true state of the
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population, and a process equation that represents

understanding of the processes governing the state.
The state-space formulation allows for partitioning of

uncertainty that arises from our inability to perfectly
observe the process (i.e., observation error) and un-

certainty that results from the failure of our model to
perfectly represent the process (process variance or
model misspecification). This is especially important in

time series applications where process error propagates
over time but observation error does not (Calder et al.

2003). If the model is further structured to allow for
individual heterogeneity in disease risk (for example) as

well as population risk, then it is also hierarchical. Both
state-space and hierarchical approaches to data–model

assimilation are potentially important avenues for future
advances in understanding the infectious dynamics of

zoonotic and vector-born infectious disease.
In the subsequent sections we present case studies of

disease systems that build in ecological complexity from
SARS, a directly transmitted human disease of zoonotic

origin (Fig. 1b) to Dengue Fever, a vector-transmitted,
anthroponotic, human disease (Fig. 1a) to Lyme and

West Nile virus (Fig. 1c) where the pathogens are
maintained in the environment by transmission among

zoonotic hosts and arthropod vectors, independent of
humans. Human infections with Lyme disease or West
Nile virus result when unusual or extreme events that

may occur seasonally or sporadically cause critical
thresholds to be surpassed (e.g., contact rates, trans-

mission timing, or vector abundance). Our goal is to
identify similar characteristics among these diverse

pathogen systems that either have facilitated or limited
successful data–model integration for inference or

forecasting. Finally, we use these insights to construct
a conceptual hierarchical modeling framework for

organizing research to advance the understanding of
zoonotic and vector-borne pathogens and improve

forecasting of human disease risk.

CASE STUDIES

Severe acute respiratory syndrome (SARS)

Severe acute respiratory syndrome (SARS) is caused
by a zoonotic coronavirus (family Coronaviridae) that

emerged in human populations during autumn of 2002
in Guangdong province of China. Before the epidemic

was contained in summer of 2003, it had spread to 27
countries, causing almost 9000 infections and 800 deaths

(Anderson et al. 2004). SARS offers an unusually
valuable example of coordinated response to an emerg-

ing disease by the public health, medical, and research
communities worldwide. A coordinated effort to under-

stand the disease system led to rapid quarantines and
likely prevented a pandemic of far greater magnitude

than was realized.
Assimilation of data from the epidemic with models

portraying the process of transmission played an
important role in determining whether ongoing control

efforts were effective and in evaluating alternatives for

intervention by public health agencies (e.g., Lipsitch

et al. 2003, Lloyd-Smith et al. 2003, Riley et al. 2003).

Since the SARS epidemic, there has been extensive

research using databases assembled from around the

world to enhance preparedness for future outbreaks of

SARS and similar diseases (Colizza et al. 2007, Kwok

et al. 2007, Kramer-Schadt et al. 2009). The contribution

of modeling in controlling SARS has been reviewed

elsewhere (Anderson et al. 2004, Gumel et al. 2004,

Bauch et al. 2005), and we will not duplicate those

efforts here. Rather, we focus on how models of disease

processes were fused with data to estimate key

epidemiological states and parameters during the

epidemic and thereafter. We pay particular attention

to representing heterogeneity in transmission and

identify ways that model–data assimilation might be

improved in the future.

Dynamic compartmental models using linked systems

of differential equations to characterize disease trans-

mission in human populations (i.e., SEIR models)

offered a vital epidemiological framework for assem-

bling observations on the progression of the SARS

epidemic. Model parameters were estimated from

observations of events during the course of the disease,

including onset of symptoms, hospitalization, and death

or recovery. Assimilation of these data with a modeling

framework allowed estimation of epidemiological quan-

tities of interest, in particular, the basic reproductive

number, R0 (Table 1), and the reproductive number R,

the number of infections created by an infected

individual in a population containing a mixture of

infected and susceptible individuals. The reproductive

number is critical to assessing the success of control

efforts because it must be ,1 to assure that the epidemic

is subsiding. Several data–model assimilation techniques

were used to estimate R0 and R including classical

(Lipsitch et al. 2003), hierarchical Bayes (McBryde et al.

2006, Lekone 2008), and maximum likelihood (Riley

et al. 2003, Wang and Ruan 2004) methods. Despite

differences in approaches, similar estimates of key

parameters were obtained (Table 1). A critically

important result obtained from the parameterized

models was the discovery, relatively early in the

epidemic, that control efforts would be effective in

reversing the exponential increase of new cases (Lipsitch

et al. 2003, Riley et al. 2003).

There were several lessons from modeling SARS that

can be broadly applied to other problems in assimilating

data with models of infectious disease. As with any

stochastic process, separate realizations of the process,

in this case the trajectory of epidemics, differed among

locations (Wallinga and Teunis 2004). Some of these

differences can be explained by high levels of hetero-

geneity in transmission, the phenomenon known as

‘‘super spreading,’’ which emerged as a hallmark of the

SARS epidemic (Galvani and May 2005, Lloyd-Smith

et al. 2005). Although the average number of infections

created by an infected individual was certainly less than

INVITED FEATURE1446
Ecological Applications

Vol. 21, No. 5



10 (Table 1), a few, rare individuals infected more than

100 (Riley et al. 2003, Galvani and May 2005, Lloyd-

Smith et al. 2005, Small et al. 2006). It appears that

hospital environments that failed to isolate infected

individuals early in the epidemic caused this hetero-

geneity: rates of infection in un-isolated hospital

environments were an order of magnitude higher than

in the non-hospital environment (Kuk and Tan 2009).

Thus, estimates of infectivity of individuals showed that

the three examples of ‘‘super spreading’’ actually did not

have exceptionally high infectiousness; instead, super-

spreading events seemed to result from characteristics of

the environments where these individuals expressed

symptoms (Lloyd-Smith et al. 2005, Kuk and Tan 2009).

Heterogeneity in transmission or contact rates must

be included as sources of stochasticity in models of

disease processes. Failure to do so causes false precision

in parameter estimates and in forecasts. Several alter-

natives for dealing with these heterogeneities in model–

data assimilation have been used in modeling the SARS

epidemic. Heterogeneity in transmission may be more

accurately captured by increasing the number of states

in the model, thereby allowing for differences in

transmission parameters for each state. For example

Riley et al. (2003) included meta-population structure in

their model of the SARS epidemic in Hong Kong.

Splitting the infected class into hospitalized and un-

hospitalized states represents another illustration of this

approach (Lipsitch et al. 2003, Wang and Ruan 2004). A

second approach was to employ more realistic models of

host contact to better represent heterogeneities resulting

from non-uniform mixing of infected and susceptible

individuals (e.g., Meyers et al. 2005, Small et al. 2006,

Zhong et al. 2009). Finally, parameters may be defined

as temporally varying as the epidemic proceeds, reflect-

ing the heterogeneity in transmission created by public

health interventions (Kuk and Tan 2009). All of these

alternative approaches require expanding the number of

parameters to be estimated, which leads to problems

with parameter estimation when data are limited (as

they inevitably are early in an epidemic). More

importantly, all of these strategies for dealing with

heterogeneity require sufficient understanding of trans-

mission to represent the heterogeneity in a coherent way

within the structure of the model. Rarely will such

understanding exist during disease emergence.

An approach that was not widely used in modeling

SARS (but see Lloyd-Smith et al. 2005, McBryde et al.

2006) is to acknowledge that heterogeneity among

individuals exists as a result of a complex interaction

of genetics, contact behavior, environment, and demo-

graphics. Rather than trying to explicitly account for

these heterogeneities in model structure, we can simply

treat them as random effects, admitting that we do not

understand their sources (Clark and Bjornstad 2004,

Clark et al. 2005). In this way we incorporate a

distribution that portrays heterogeneities that we are

sure exist, but which we may not fully understand. Such

hierarchical approaches may provide more reliable

estimates of uncertainty in future efforts to assimilate

models with data on epidemics.

State-space models were not applied in modeling the

SARS epidemic and observation error was not treated

formally in any of the data assimilation approaches.

TABLE 1. Estimates of the basic reproductive number (R0) for SARS based on process models fused with case history data.

Study Location Modeling approach R0 95% confidence envelope

Riley et al. (2003) Hong Kong SEIR þ hospitalized model for multiple
nodes in metapopulation. Maximum
likelihood estimation.

2.7� 2.2, 3.7

McBryde et al. (2006) Shanxi Province,
China

Bayesian estimates of gamma distributed
transition times. Incubation time treated
as random effect. SEIR model structure
with hospitalized state.

4.8� 2.2, 8.8

Lipsitch et al. (2003) Hong Kong Bayesian analysis of rate of exponential
growth in infected population and serial
interval using prior information from
Singapore epidemic.

2.2 1.5, 7.7§

Lekone (2008) Hong Kong Bayesian analysis of variation of Riley et
al. (2003) model.

3.8 sd ¼ 0.09

Donnelly et al. (2003) Hong Kong Analysis of time-delay distributions using
maximum likelihood methods.

2.7 2.3, 3.7

Wallinga and Teunis (2004) Hong Kong Maximum likelihood analysis of case
pairing.

3.6 3.1, 4.2

Wallinga and Teunis (2004 Singapore Maximum likelihood analysis of case
pairing.

3.1 2.3, 4.0

Wallinga and Teunis (2004) Vietnam Maximum likelihood analysis of case
pairing.

2.4 1.8, 3.1

Wallinga and Teunis (2004) Canada Maximum likelihood analysis of case
pairing.

2.7 1.8, 3.6

Note: SEIR stands for a susceptible, exposed, infected, recovered compartmental transmission model.
� Does not include super-spreading events.
� Estimate of R early in epidemic.
§ The 90% credible interval
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Efforts were made to determine if model results were

sensitive to such errors, without formally estimating

their magnitude (Lipsitch et al. 2003). It is well known

that there are uncertainties in even the best case-

reporting data: there are cases that go undiagnosed

and those that are misdiagnosed. These errors are most

likely to occur early in epidemics, when data are sparse

and parameter estimates are most sensitive to errors.

This argues that future data–model assimilation could

benefit from state-space approaches that formally

estimate uncertainty arising from observation error

and process variance.

The SARS epidemic illustrates both the challenges

and the benefits of formally assimilating data with

models of emerging infectious disease. Because disease

transmission was between humans and because it

emerged in nations with relatively well-developed public

health programs, data on the progression of SARS were

far more extensive than could be expected for many

diseases. In other words, the data were about as good as

they get for outbreaks of a new disease. Despite the

quality of the data, the models that generated inference

to understand the epidemic were relatively simple, with

few parameters and many simplifying assumptions. This

simplicity did not prevent them from being useful, but it

does caution excessive optimism for data–model assim-

ilation efforts that involve sparse data and greater

inherent uncertainty.

Dengue fever

Dengue fever is caused by a viral infection (family

Flaviviridae) that is transmitted between mosquito

vectors and humans. Although the ancestral trans-

mission cycle of dengue viruses likely included forest

primates, human populations are generally believed to

be the primary reservoirs for current dengue outbreaks

(Gubler 1998). The predominant vector transmitting

dengue to humans is the mosquito Aedes aegypti, a

species that lives in close proximity to humans and often

breeds in man-made containers. The acute illness

manifests as headache, fever, exhaustion, rash, and

muscle and joint pains. There are four serotypes of

dengue viruses and infection with heterologous sero-

types in fairly close temporal proximity may produce

more severe disease (dengue shock syndrome and

dengue hemorrhagic fever). Although dengue has been

endemic in Asia since at least since the 18th century,

expansion of the mosquito vectors and global movement

of human populations have greatly changed the

distribution and intensity of dengue fever, which is

now considered an emergent or reemerging disease

across Africa, Australia, and the Americas (Gubler

1998). It is estimated that approximately10 million cases

of uncomplicated dengue occur annually, with 500 000

cases of dengue hemorrhagic fever or shock syndrome

primarily from tropical and subtropical regions.

As with most vector-borne pathogens, the ability to

successfully predict dengue incidence is generally be-

lieved to rely on how well we can predict vector

abundance. However it is important to note that because

humans are the primary dengue host, human behavior

may be as important as vector abundance for accurate

forecasts of pathogen amplification and disease risk.

Models have been useful for understanding dengue

transmission and for evaluating control strategies.

Dynamic compartmental models for vector-borne dis-

eases affecting humans are generally similar to the

SEIR-type mathematical models described above, but

with the added complexity of a vector population

(MacDonald 1957, Anderson and May 1992). For

instance, Burattini et al. (2008) linked a series of nine

differential equations to characterize dengue infection in

human hosts and mosquitoes. The authors used this

simulation model to evaluate control options and

showed that even a dramatic crash in the size of adult

mosquito populations may not be sufficient to stop

ongoing dengue epidemics (Burattini et al. 2008).

Much of the dengue research has focused on under-

standing how disease incidence is related to environ-

mental variables that influence the abundance of

mosquito populations (Peterson et al. 2005, Kearney

et al. 2009, Wu et al. 2009). For example, climatic

conditions are important predictors of dengue amplifi-

cation due to the tight relationship between mosquito

life cycles and temperature and precipitation. Mosquito

development from egg to biting adult, survival rate at

each life stage, and feeding behavior are all strongly

dependent on temperature (Watts et al. 1987, Rueda

et al. 1990, Focks et al. 1993). Furthermore, the extrinsic

incubation period (EIP) of viral replication within the

mosquito depends nonlinearly on temperature and is

maximal at temperatures above 348C, while the virus

fails to be transmitted at temperatures below 308C

(Watts et al. 1987) in the laboratory. Due to the intimate

connection between mosquito population dynamics,

viral amplification, and climatic variables, much effort

has been invested in developing methods to integrate

climate data with observations of mosquitoes and

dengue incidence. However, while climate data are often

available and prolific at broad spatial scales, mosquito

data are less abundant and are rarely characterized at

the scale of climate data. Local and transient weather

patterns and interactions with land cover are likely to

control real-time mosquito abundances and can be

difficult to ascertain from the available climate data. A

formal framework for accommodating mismatches in

scale in order to coherently integrate process models,

historical disease incidence data, experimental results,

and diverse environmental data would greatly advance

understanding of the ecological characteristics that

control dengue outbreaks, as well as many other

vector-borne diseases.

Phenomenological models can often establish clear

associations between a suite of plausible climate

measurements and mosquito abundance (e.g., Reisen

et al. 2008). However, even when statistically significant
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associations are established, the resulting models do not

always lead to accurate forecasts of vector population

dynamics (Ailes 1998) or pathogen amplification. Many

models use a common model structure (e.g., Ailes 1998):

XðtÞ ¼ B1Y1ðt � n1Þ þ B2Y2ðt � n2Þ þ . . .þ BiYiðt � niÞ

where X(t) is vector abundance at time t and the Y’s are

environmental conditions at various but fixed time lags

(n1, n2,. . .ni). Many of the studies that have used climate

variables to predict mosquito abundance choose a

specific time lag, such as precipitation two weeks prior

to the abundance estimate. Often these choices are made

based on biological understanding (i.e., average mos-

quito development duration is two weeks) but fail to

incorporate the natural variation behind published

means. A focus on building parsimonious models and

assuming a constant effect (Bi) at a fixed time interval in

the past may lead to useful inference but can also result

in error accumulation and propagation forward in

predictions.

Visualization and modeling approaches that facilitate

the exploration of biologically relevant hypothesis space

are critical tools for understanding complex systems like

infectious disease (e.g., Plowright et al. 2008). Graphical

methods that include cross correlation mapping to

visualize support for a range of plausible relationships

between vector populations and environmental variation

are effective tools for evaluating appropriate environ-

mental space. Such approaches demonstrate that there

can be extensive time intervals, on the order of weeks,

when the relationship between the leading environ-

mental conditions (i.e., temperature and precipitation)

and the subsequent vector population abundances are

approximately constant (Curriero et al. 2005, Shone

et al. 2006).

Phenomenological models have also been used to link

dengue incidence to climate variables. As was the case

with the relationship between mosquito abundance and

climate, statistically significant relationships do not

always indicate sufficient model structure for accurate

forecasts of disease incidence. For example, Nakha-

pakorn and Tripathi (2005) found that incidence of

dengue was negatively related to temperature, which

only makes biological sense at the upper temperature

limits of Aedes aegypti survival, an uncommon condition

during their study. Another study found that lagged

precipitation was a significant predictor of early-wet-

season dengue incidence but was not associated with a

significant change in Aedes aegypti abundance (Foo

et al. 1985), the theoretical mechanism for why

precipitation would increase dengue transmission.

Even within the same study, spatial location seems to

play an important role in when and how climate

variables are associated with dengue transmission (e.g.,

Promprou et al. 2005, Johansson et al. 2009).

A hierarchical approach taken by Johansson and

colleagues (2009) to evaluate dengue transmission in

Puerto Rico examined the association between climate

and dengue transmission using a hierarchically struc-

tured model to explicitly evaluate both the short-term

association between dengue incidence and monthly

weather variation and the ‘‘global’’ influence of regional

climate on local short-term associations. The authors

also included an adaptive cubic spline component to

control for the inherent (and potentially confounding)

seasonality in weather variables. Johansson et al. (2009)

demonstrated that spatial heterogeneity in the shorter-

term relationships between weather and dengue trans-

mission might best be understood within the context of

spatial patterns in long-term climate characteristics. For

example, the cumulative effect of temperature on dengue

incidence was greatest in the cooler mountainous areas,

while precipitation was most important in the dry

southwestern coastal region. Neither temperature nor

precipitation was an important predictor of dengue in

the region where they were already normally high. The

two-stage analysis employed by Johansson et al. (2009)

to estimate average global effects and determinants of

local variation is an approach that could be applied to a

number of other environmentally mediated diseases.

This also highlights how simple amalgamation of many

studies across space could generate misleading or un-

interpretable results.

Although dengue viruses have likely caused illness for

much of human history, they have expanded in

distribution and had the greatest impact on human

populations in just the past few decades. Changing

climate and increased globalization seem poised to

support further intensification of dengue outbreaks

(Kearney et al. 2009, Wu et al. 2009). Unlike the

SARS example above, dengue control strategies must go

beyond quarantining infected humans to direct manip-

ulation of mosquito populations. This section demon-

strates that a focus on model parsimony may help

identify and define important relationships but ecolog-

ical disease systems are ultimately complex and ignoring

stochasticity in natural processes or estimation uncer-

tainty is detrimental to forecasting efforts.

Lyme disease

Lyme disease is a zoonotic disease caused by

spirochetal bacteria (Borrelia burgdorferi) and trans-

mitted by several species of Ixodes ticks. Lyme disease

was first recognized and formally described in the late

1970s following a cluster of juvenile arthritis cases in

Lyme, Connecticut, USA (Barbour and Fish 1993). In

the ensuing 30 years, Lyme disease has spread geo-

graphically from a coastal New England focus through-

out much of the northeastern and mid-Atlantic regions,

and adjacent southeastern Canada. The pathogen has

also undergone dispersal from historical ranges in the

upper Midwest of the United States and in Europe and

human incidence rates (number of cases per capita per

year) have increased dramatically throughout its range.

Human Lyme disease risk is generally correlated with

the population density of infected ticks (specifically the
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nymphal stage), although some studies indicate that the

infection prevalence in the tick population (proportion

of ticks infected) better predicts human incidence

(Connally et al. 2006, Walk et al. 2009). Borrelia can

persist in several wildlife (zoonotic) hosts and amplify

whenever conditions allow. Data and understanding of

tick biology and the ecological interactions between

ticks and their zoonotic hosts are critical to the study of

human Lyme disease risk. Humans are not the predom-

inant host in the Lyme disease system (see Fig. 1c).

Humans cannot infect each other or infect ticks. In

eastern and central North America, the sole vector of

Lyme disease is the blacklegged tick, I. scapularis. Ixodes

scapularis ticks feed on vertebrate hosts three times, once

each as a larva, nymph, and adult. Larval and nymphal

ticks are extreme host generalists that will feed readily

from dozens of potential zoonotic host species (Keirans

et al. 1996, LoGiudice et al. 2003). Ticks that feed from

an infected host might acquire an infection, which can

persist and be transmitted during the nymphal (if

infected as larvae) and adult blood meals. The life cycle

of the blacklegged tick typically lasts for two years and

includes three blood meals that are often taken from

three different host species.

Dynamic compartmental models have been used to

evaluate infectious dynamics in this system as well

(Ogden et al. 2007), with similar benefits and limitations

as described in the previous sections. Ogden et al. (2007)

prioritized the importance of tick population dynamics

and included a model component to simulate black-

legged tick population change by incorporating rates of

survival, development, and host-finding of all life stages,

as well as reproduction by adults. The component model

for tick population dynamics (Ogden et al. 2005)

included 48 different parameters for tick vital rates

and two for host availability (white-footed mice and

white-tailed deer), and was able to characterize locally

observed population fluctuations of larval, nymphal,

and adult ticks reasonably well. However, the resultant

inference derived from even this complex, ecologically

thoughtful model relied heavily on key assumptions. For

example, tick population dynamics were most sensitive

to mortality rates of immatures (larvae and nymphs),

which were assumed to be time-invariant constants.

Because of this assumption, warmer conditions that

accelerate development automatically resulted in higher

densities simply because ticks spent less time subject to

constant daily probability of mortality (Ogden et al.

2005). These models thus predict northward expansion

of blacklegged ticks into Canada as a consequence of

anthropogenic climate change. However, they are

unable to accommodate nonlinear or spatially hetero-

geneous relationships between climatic conditions and

tick demography. For instance, a warmer winter climate

could plausibly promote tick survival and population

growth in northern latitudes while simultaneously

reducing survival and population growth in southern

latitudes. As seen in both the previous case study

examples, heterogeneity in transmission rates in both

space and time is a fundamental determinant of

pathogen amplification and transmission that is often

overlooked in even the most mechanistically complex

modeling approaches.

Phenomenological models have been constructed to

examine the spatial and temporal distribution of black-

legged ticks based on abiotic variables that can be

remotely sensed. In general, these approaches use

presence/absence type data for blacklegged ticks at one

location to construct current distribution maps in order

to delineate areas with ticks from those without ticks

(Estrada-Pena 2002, Brownstein et al. 2003, 2005).

Many of these models can capture current tick

distribution with high sensitivity and specificity and

are often used to predict the spread of Lyme disease risk

into all abiotically suitable tick habitats that occur

outside the current range. For a pathogen that is in the

process of expanding in range (as is Borrelia), the abiotic

conditions that match its current range might represent

only a small subset of those that permit its existence.

When this is true, any given snapshot of these conditions

will be highly conservative in predicting the future range.

Phenomenological models often fail to meaningfully

address biological mechanisms that might affect tick

populations and Lyme disease risk. The abiotic variables

that enter models are selected not from a priori

expectations but from the set of available data that

can be produced from remote sensors. Even when high

sensitivity and specificity can be achieved, the predictor

variables are often biologically uninterpretable and not

necessarily sufficient for accurate forecasting. A com-

plex, fourth-order polynomial with minimum winter

temperature was found to be the best predictor of

habitat suitability for blacklegged ticks in Brownstein

et al. (2003). Such modeled relationships can be highly

informative for generating and defining the hypotheses

regarding the complex ecological interactions and

mechanisms driving spatiotemporal intensity of Lyme

disease, but they are not always sufficient for evaluating

those hypotheses or for generating accurate forecasts.

The ecological complexity in the Lyme disease system

may best be approached through a comprehensive

investigation of multiple biologically relevant model

pathways explaining how, where, and when pathogen

amplification occurs in zoonotic hosts and spills-over

into human populations. There now exists a large library

of related experiments and field observation studies that

together generate strong inference (e.g., Plowright et al.

2008) regarding the complex ecological interactions that

lead to spatiotemporal variability in Lyme disease (e.g.,

Schmidt and Ostfeld 2001, Schauber et al. 2005, Ostfeld

et al. 2006). Synthesis of data sources from a broad

group of researchers has shown that the timing and

composition of host community dynamics are critical

components of Lyme disease amplification and are best

understood within the hosts’ broader trophic interac-

tions (Fig. 2). The diverse expertise and field data
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required to define and understand the relationships in

Fig. 2 are clearly only possible through collaborative

efforts and careful data–model assimilation. White-

footed mice are the most competent reservoir for

Borrelia burgdorferi and also the host on which the tick

vector is most likely to survive while attempting a blood

meal (Keesing et al., 2009). Consequently, high abun-

dance of white-footed mice in midsummer when larval

ticks are most active results in ample opportunities for

blood meals that are likely to both infect larval ticks and

promote survival to the nymphal stage. The population

density of nymphs and infection prevalence with B.

burgdorferi are correlated with population density of

white-footed mice in the previous summer (Ostfeld et al.

2001, 2006). Summer population density of white-footed

mice, in turn, is determined largely by acorn production

(genus Quercus) the prior autumn (Elkinton et al. 1996,

Ostfeld et al. 1996, Jones et al. 1998). Mouse popula-

tions with access to abundant seed resources have high

overwinter survival rates, begin breeding earlier in the

spring, and reach higher densities at the time ticks are

seeking hosts (Wolff 1996, Ostfeld et al. 2006). Because

of the strong trophic links between acorns and mice and

between mice and both ticks and Borrelia, acorn

production provides a valuable leading indicator of

incidence of Lyme disease in humans two summers later

(Schauber et al. 2005). Because acorn production by

populations of oaks can be synchronized over areas of

hundreds to thousands of square kilometers (Liebhold

et al. 2004), the predictive power of acorn production at

any one site might be high even hundreds of kilometers

away (Schauber et al. 2005).

There are a number of tick-borne diseases affecting

humans globally and Ixodes scapularis carries at least

four known zoonotic pathogens (Swanson and Norris

2007). Models that can characterize population fluctua-

tions and infection rates for Ixodes ticks can advance

understanding of multiple disease systems. Having

detailed understanding of why and when tick popula-

tions increase and how this relates to human exposures

is fundamental to disease management and forecasting.

The Lyme disease system presents a clear example of

how ecological understanding can be developed through

an approach including both empirical field work and

mathematical process models and how this broader

understanding can inform local and regional public

health protection. This system also illustrates that data

are still needed to better understand host and vector

abundances and demographic processes, at both fine

and broad spatial scales. And finally, a formal frame-

work to assimilate these diverse data with biological

process models is required to elucidate the spatial

determinants of current risk and to forecast future risk

in a changing environment. Models that are supported

by the abiotic and relevant biotic (e.g., seed production,

host availability) data could be used in combination

with land-use change models and regional climate

change scenarios to predict specific changes in the

distribution of ticks and the pathogens they transmit.

FIG. 2. The ecological interactions that define interannual variability in human infection with Borrelia burgdorferi in the
northeastern United States (bold lines and boxes) are best understood when considered within the broader community (gray lines)
of trophic interactions.
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West Nile virus

West Nile virus (WNV) is an emergent zoonotic

disease caused by a viral infection (family Flaviviridae)

that was first detected in the western hemisphere in 1999,

where it caused clusters of disease and mortality in

human and bird populations in and around New York

City (Lanciotti et al. 1999). West Nile virus spread

rapidly across North America and since 2002, there have

been an average 4089 6 2738 (mean 6 SD) human cases

reported and 156 6 89 deaths per year (data available

online).6 Persistence of WNV in the environment

requires a continuous bird–mosquito–bird cycle that

includes amplification of the virus in both the avian

hosts and mosquito vectors. Several species of birds may

be competent hosts (i.e., can be infected and reinfect a

vector; Komar et al. 2003, Kilpatrick et al. 2007) and a

subset of those are susceptible to WNV disease (Komar

et al. 2003, LaDeau et al. 2007). Likewise, there are

several mosquito species that may play important roles

in amplifying and transmitting the virus between birds

and to humans (Andreadis et al. 2004, Kilpatrick et al.

2005, Turell et al. 2005). Humans and other large

mammals are not necessary for WNV persistence or

amplification; they may be infected with WNV if bitten

by an infectious mosquito but do not produce sufficient

viremia to reinfect a mosquito. As few as one in roughly

100–200 undiagnosed WNV infections is ever reported

(Tonjes 2008), and although human incidence is a

readily available data source, disease risk cannot be

effectively understood by evaluation of recorded human

incidence alone.

The example of WNV in North America exemplifies

the challenges associated with forecasting annual and

spatial outbreaks of a newly emergent disease. Prior to

1999, West Nile virus had only been recorded in the

eastern hemisphere where it caused sporadic and short-

lived epidemics in humans and horses since the 1930s

(Smithburn et al. 1940, Hubalek and Halouzka 1999).

While the intensity of disease outbreaks in both humans

and birds is variable across years and regions (LaDeau

et al. 2008), at some locations WNV infections have now

recurred annually for over a decade (see footnote 6).

Understanding how the North American landscape and

climate have facilitated the rapid spread and persistent

amplification of WNV is essential to understand the

pathogen’s impact on avian communities, develop

control strategies, and forecast human risk.

West Nile virus is now endemic across much of North

America (Kilpatrick et al. 2007). That it persists from

year to year in many locations confirms its continuous

presence in either host or vector species throughout the

year. Although there are numerous hypotheses regard-

ing what extrinsic (e.g., weather, habitat) and intrinsic

(e.g., host–vector population dynamics) factors might

drive spatiotemporal heterogeneity in WNV persistence,

amplification and disease outbreaks (e.g., Kilpatrick

et al. 2006b, c, Day and Shaman 2008, Platonov et al.

2008, LaDeau et al. 2010), the ability to capture the

processes that determine annual and spatial intensity of

WNV amplification and forecast disease outbreaks

remains elusive. There is a growing library of research

detailing the individual components of the WNV disease

system: varying competence (ability to become infected

and transmit infection) among mosquito vector species

(Kilpatrick et al. 2005, Turell et al. 2005, Reisen et al.

2006b) and avian host species (Komar et al. 2003),

strain-specific relationships between temperature and

viral replication rates within mosquitoes (Reisen et al.

2006a, Kilpatrick et al. 2008), vector feeding preference

(Andreadis et al. 2004, Kilpatrick et al. 2006b, c), host

immunity (Fang and Reisen 2006), spatial heterogeneity

in host seroprevalence (Komar et al. 2005, Bradley et al.

2008), and spatiotemporal records of human incidence

(see footnote 6). The next crucial step is to develop a

coherent framework to integrate these distinct compo-

nents into a common model of the WNV system.

Correlative and phenomenological methods have been

effective at generating quick inference from observations

in order to guide public health efforts and warn of

impending human risk. For example, mosquito density

(Tachiiri et al. 2006) and early-season vector infection

rates (Brownstein et al. 2004) both seem to indicate

increased human risk of WNV infection in late summer.

Evidence of WNV infections in avian communities in

early and midsummer are also potential predictors of

local spillover of WNV into human populations (Eidson

et al. 2001, Guptill et al. 2003, Nielsen and Reisen 2007).

As in the earlier case studies, the assumption that vector

density is positively associated with human disease risk

is widely accepted. Thus, when the early-warning signals

mentioned above indicate that WNV amplification is

occurring, mosquito control programs are most often

enacted to reduce local mosquito abundances (e.g.,

Carney et al. 2008, Lothrop et al. 2008). Experimenta-

tion to test the efficacy of these early-warning signals or

the importance of the biological processes they represent

could potentially leave humans at risk and is not ethically

feasible. As is the case with most infectious disease

research, more creative methods are needed to synthesize

the available data with alternative process models to

evaluate mechanistic assumptions that characterize

disease transmission and define how human risk is

minimized.

As with the other case studies presented, dynamic

compartmental models are a powerful tool for organiz-

ing our understanding of the WNV system, but have yet

to fully integrate model structure with the available

data. Wonham and colleagues (2006) reviewed several

published compartmental models of WNV transmission,

all of which used a slightly different structure of

differential equations to represent transitions between

susceptible and infected hosts and susceptible and

6 hhttp://www.cdc.gov/ncidod/dvbid/westnile/surv&control.
htmi
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infected vectors. The authors found that each model was

highly sensitive to the assumptions regarding the

relationship between transmission rate and abundances

of hosts and vectors (i.e., density dependent, frequency

dependent, constant) and that allowing animal hosts to

transition from infected to immune (versus to suscep-

tible or dead) dramatically changed the predicted R0 for

the disease (Wonham et al. 2006). Unfortunately, data

on host recovery and immunity is rare (but see Komar

et al. 2003, Fang and Reisen 2006, Nemeth et al. 2008)

and potential heterogeneities among recovery rates for

species and regions need to be obtained before reliable

predictions of R0 can be made. Jiang et al. (2009) also

used the WNV system to demonstrate that parameter

estimates (e.g., of R0) from standard dynamic compart-

mental models are also sensitive to starting conditions

(i.e., the initial numbers of infected birds or mosquitoes).

Similar to the SARS case, the WNV example high-

lights the need for formal data–model assimilation in

real-time to manage an epidemic as it occurs. Identifying

realistic starting conditions or ‘‘true’’ transmission

structure may be like hitting a moving target, as

abundances and infection rates vary in time and space,

and these limitations emphasize the importance of a

data–model integration approach that is focused on

exploration of alternative pathways over techniques that

estimate support for yes/no tests. This case study again

underlines that even complex models are only as good as

the assumptions. When process error is present or when

a parameter estimate from the literature fails to reflect

empirical findings at the spatial scale of interest then

simulation outcomes will not be realistic.

SYNTHESIS

Estimating latent parameters for processes that

cannot be observed is a persistent challenge in the study

of infectious disease. There is a common need across the

case study examples for a formal framework to

coherently integrate all relevant data with current and

growing understanding of the system ecology, often in

real time. Each case presented demonstrates continued

need for data collected at relevant scales to better

understand the importance of spatiotemporal hetero-

geneity and the mechanisms that define it. From the

discussion of SARS, it is clear that public health risk can

be effectively managed with minimal understanding of

zoonotic reservoirs if the transmission pathway impor-

tant to human epidemics is maintained by direct human-

to-human contact (Fig. 1b). However, lack of ecological

understanding of the zoonotic reservoirs and the

variables that allowed for the initial spillover trans-

mission to humans may mean that we have little ability

to forecast when and where SARS or similar pathogens

may jump to humans in the future. When zoonotic

reservoirs and vector species are important for pathogen

persistence and amplification in the environment (Fig.

1b and c), it becomes essential to coherently integrate

data on vector and host demography as well as

infectious dynamics.

In general, we support the call by Plowright et al.

(2008) for further development of strong inference

approaches in infectious disease research. More specif-

ically, we propose a formal framework to integrate all

relevant information with a model structure that allows

for latent processes, acknowledges incomplete biological

understanding and has the flexibility to update process

understanding as research advances. Next we describe a

conceptual framework for data–model fusion in infec-

tious disease research that addresses three primary

challenges that we have identified in our discussion

here, (1) integrate multiple data sources and spatial

scales to inform latent processes, (2) partition uncer-

tainty in process and observation models, and (3)

explicitly build upon existing ecological and epidemio-

logical understanding.

Conceptual framework for data–model fusion

We propose that progress in understanding and

predicting zoonotic and vector-borne diseases can be

made by using hierarchical or conditional statistical

modeling (see Fig. 3) to link together three kinds of

models: (1) data models for observations, (2) process

models of disease dynamics that include critical latent

parameters such as transmission rates and R0, and (3)

spatial models for mapping and predicting human

disease prevalence. Each of these components is already

well established. They have not, however, all been

brought together in the context of zoonotic disease for

data integration or epidemic forecasting. The conceptual

framework presented in Fig. 3 presents opportunities for

pooling information from multiple sources while weight-

ing these in a consistent way based on their information

content. Importantly, because the component model

parts are assembled together conditionally, adding or

removing parts and comparing alternative models can

be straightforward (Clark 2005, Cressie et al. 2009). We

have constructed a framework that combines the

advantages of statistical models (i.e., explicit incorpo-

ration of data and quantification of uncertainty) with

the key features of more traditional epidemiological

models (i.e., incorporating mechanistic insights and

exploring system dynamics like thresholds for emergence

and persistence). Furthermore, the framework charac-

terized by Fig. 3 explicitly relates ecological disease

dynamics in zoonotic hosts and/or vectors to human

disease prevalence in a stochastic spatial and temporal

context.

The framework depicted by Fig. 3 may seem

dauntingly complex. However, zoonotic and vector-

borne infectious diseases are complex systems and

failure to acknowledge the inherent heterogeneity and

uncertainty is a major roadblock to advances in

ecological forecasting. We are attempting to lay out a

general structure that can accommodate the key model-

ing goals and lessons from the case studies, while
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providing a context for classifying and comparing

models that implement different components of this

idealized general model. While the overall conceptual

framework is complex, it is built by combining tools that

already exist in epidemiology, ecology, and statistics. In

just the past decade great strides have been made that

address each of the disease modeling goals discussed

above. There have been methodological advances in

spatiotemporal modeling (Neubert and Caswell 2000,

Banerjee et al. 2004), disease mapping (Biggeri et al.

2006, Jin et al. 2007), dynamic spread models (Hooten

and Wikle 2008), integrating data into dynamic models

(Clark and Bjornstad 2004, Hobbs and Hilborn 2006,

He et al. 2010), and in developing flexible ‘‘data models’’

to accommodate error structures and bias in observa-

tions (Congdon 2003, Ogle and Barber 2008, Cressie

et al. 2009). Model choice and validation for complex,

hierarchical models remains a topic of current statistical

research and we will not address it in detail here.

However, in addition to recommending the ‘‘strong

inference’’ approaches (e.g., Plowright et al. 2008), we

stress that model structure, assumptions, and data

support should be evaluated carefully at each stage.

Specific model selection and choice methodologies will

depend on the model structure and the research goals

(Clark et al. 2007, Craigmile et al. 2009, He et al. 2010).

Data models.—A large part of the challenge in

modeling zoonotic diseases is the need for diverse and

extensive data, including host and vector abundances,

demographic and infection rates, human case report

records, climate, and land use data. Each data type can

contribute toward understanding and predicting the

FIG. 3. A conceptual framework for inference and forecasting vector-borne zoonotic disease. (a) Modeling zoonotic/ecological
components requires data models (shaded boxes, dashed lines) to relate observations to ‘‘true’’ latent variables and process models,
shown in solid lines and unfilled boxes. Relevant data sources include environmental data layers (e.g., temperature, precipitation,
habitat measures), and observations of host and vector abundances (counts), as well as observed infection rates. (b) An additional
component model can be used to link processes (and uncertainties) in panel (a), to refine inference and forecasting of human disease
risk. Data sources include observed human incidence and the data layers that describe bias in human case reporting (e.g.,
socioeconomic) or alter transmission and infection dynamics (e.g., recreational activities, immunosuppression).
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latent parameters critical to disease dynamics, but each

is also subject to potentially large measurement error.

One of the major advantages to using a conditional

hierarchical modeling approach is the ability to flexibly

accommodate such data types and their different sources

of measurement error by explicitly characterizing the

relationship between each type of data and the latent

parameters they inform (dashed arrows in Fig. 3).

Examples of such data models include likelihood-based

mark–recapture models, which have been extended to

incorporate among-individual and spatial and temporal

variation (Royle and Link 2002, Royle 2009), and error

rate models for infection assays (Joseph et al. 1995).

Incidence data on human disease are also subject to

error (e.g., He et al. 2010). Lyme disease reports, for

example, may be low in areas with recent disease

emergence and rise as physician awareness increases

(Young 1998, Chen et al. 2006). The framework in Fig. 3

allows for such biases to be systematically dealt with;

observed disease can be related to true incidence through

a data model with a spatially and temporally varying

latent parameter to characterize the probability that a

case is reported given that it actually occurred.

Furthermore, these probability parameters could be

regressed on factors identified as important in previous

studies, such as time since first disease report in the

county, distance from a hospital, and human population

density, potentially allowing us to also learn about the

sources of reporting error and bias.

Process models.—The process functions may resemble

the same dynamic compartmental models described in

the case studies above. However, a key difference is that

the process models in Fig. 3 are both formally fused with

data and structured to allow for parameter stochasticity.

For example, in a vector-borne disease system we could

use a susceptible-infected (SI) model to characterize

pathogen movement through susceptible uninfected and

infected vectors, and relate the infection process to

surveys of vector abundance and infection. The SI

model would include a stochastic and potentially

spatially and temporally varying transmission parame-

ter, and be implemented as a state-space model in which

populations of susceptible and infected vectors are

related through data error models to the raw survey

data. A more detailed model could then add population

structure and could also include an analogous model for

primary reservoir hosts. When these process models

capture key dynamics of the disease’s epidemiology, they

will allow us to explore thresholds for disease persistence

in a population and test how close to such thresholds

real populations tend to be. In Lyme disease, for

example, rate of infection of the tick vector appears to

be correlated well with local tick abundance (Chen et al.

2006). This makes sense mechanistically: in a standard

SI model, higher tick abundance means more bites per

host, (assuming constant host density), which increases

the proportion of infected hosts because each host is

‘‘sampling’’ multiple ticks and has a greater chance of

encountering an infected one. Higher host infection rates

will feed back to increase the rates of infection in ticks,

because there will be a higher probability that each tick’s

blood meal comes from an infected host (Caraco et al.

2002). So the proportion of infected ticks and tick

abundance are dynamically related both directly and

through feedbacks, and their nonlinear covariation will

inform the process model for infection dynamics to

provide inference about the critical latent variables of

transmission and amplification rates. As with current

dynamic compartment models, the precision and accu-

racy of the parameters will be directly related to the

biological assumptions that structure the model and to

the data used to construct the model. However, the

structure of this framework will allow us to evaluate

data and process structure explicitly through the

partitioned process and observation error terms.

The hierarchical approach, especially if implemented

in a Bayesian framework, enables these models to

accommodate spatial and temporal rate variation

directly. For example, a standard epidemiological model

can be modified to relate key parameters to environ-

mental factors, and to allow the relationships between

environment (e.g., minimum winter temperature) and

parameters to vary spatially (Johansson et al. 2009). As

with many data models, spatially varying parameter

models have been extensively studied in the statistics

field, but applying them to zoonotic and vector-borne

disease and in combination with other hierarchical levels

is novel and could make these models more useful for

managing and forecasting disease.

Spatial models of human disease incidence.—In spatial

models of disease occurrence, the disease reports arise as

a stochastic process from a latent intensity surface, with

spatial structure in the disease process, the measurement

process, or both. In the conceptual framework we are

proposing, the relative risk of human disease occurrence

is represented by a latent intensity surface that varies as

a function of a few key parameters from the process

models characterizing infection in vector and host

populations. This disease intensity surface can be then

related to hypothesized causal factors such as density

and infection rates of vectors, and with environmental

factors, including climate and land use, as well as

population and behavior data, including contact net-

works (Farnsworth et al. 2006). For spatially aggregated

or areal unit data (e.g., county-level disease counts)

standard spatial modeling tools include conditional

autoregressive (CAR) models that allow correlation

among areas defined as ‘‘neighboring’’ (Banerjee et al.

2004).

By testing alternative model structures informed by

existing information, we should be able to use the

proposed framework to identify key links between

population processes (the disease organism, the vector,

the animal hosts), extrinsic environmental factors (land

use, climate), and human infections. The spatial

flexibility of the models, to the extent sufficient data
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are available to support this, will be useful for exploring

variation in these relationships in space and time, and

for distinguishing relationships that are relatively con-

stant from others that change with environmental

gradients or population characteristics. Using models

in this exploratory way brings us back around to where

epidemiology began with John Snow and the water

pump, now with better tools but faced with the harder

challenge of finding the key sources and drivers of

infection for complex emerging diseases.

CONCLUSIONS

Our review flags areas where improved data-gathering

would substantially improve our ability to model disease

dynamics, make inferences about latent parameters, and

predict human disease incidence patterns. These data

needs are important regardless of the modeling frame-

work. To improve the epidemiological/ecological core

process models in our conceptual framework, it will be

important to gather ecological data on host and vector

population structure and behavior in order to better

quantify basic empirical parameters like population

growth rates, as well as choosing the correct functional

forms for latent parameters (e.g., Wonham et al. 2006).

The case studies discussed here demonstrate that more

comprehensive spatial and temporal information on

vector and host abundances and infection rates would

greatly improve the capacity for forecasting ecological

dynamics that influence pathogen amplification and

spillover to humans.

A persistent issue with developing timely inference for

management and forecasts of EID outbreaks is that the

data needed to fully parameterize process models (e.g.,

incidence, transmission rates, mortality rates) are rare

until the disease reaches epidemic proportions. Better

understanding of the population dynamics of common

host and vector species for pathogens already present in

North America (i.e., birds, mice, mosquitoes, ticks) is

vital to managing these diseases but may also be

important for limiting EIDs still to come. We echo

many other researchers in our call for support of long

term monitoring and interdisciplinary collaboration

(e.g., Crowl et al. 2008). Public health departments,

veterinarians, ecologists and epidemiologists all gather

distinctive information that should be integrated (with

input from statisticians, mathematicians, and computer

scientists) in a model framework like the one proposed

here, to produce better mechanistic insights and,

eventually, better forecasts. Given strong constraints

on research on EID (no human experiments, many

parameters and little data), and the urgent need to make

progress, this kind of fusion of data and expertise via

hierarchical models should prove an indispensable tool.
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