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Lake ecosystems are important to humans but also act as sentinels of climate change. Due to contact with
the atmosphere and surrounding watershed, lake surface water temperature in particular reflects even small
changes changes in climate. Studies have found that remote sensing observations of radiation emitted from
the Earth’s surface collected by satellites can be used to calculate surface water temperatures, increasing
long-term climate study feasibility and potential. However, there are still few studies using remote sensing
data to examine trends in surface temperatures or that relate surface temperatures with each other. Tempera-
ture is a controlling variable for many biological processes, thus shifts in temperature can result in ecological
change. Further, understanding the relationship between terrestrial and aquatic temporal temperature trends
within watersheds and across regions in relation to shrinking or growing lakes may reveal the direct (e.g.,
human manipulation) or indirect (e.g., climate) drivers of change in lake extent. Here we used Moderate
Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product from the Aqua
satellite from June 2002 to May 2018 to determine the lake characteristics that explain trends in differences
between lake surface water temperature and surrounding land temperature for 95 of the largest lakes in the
United States. We used a linear Bayesian regression model to estimate trend differences between surround-
ing land and surface water temperatures. Of the 12 most certain trend difference estimates, Lake Hartwell
had the smallest difference between land and water warming trends (with water warming at a faster rate
than land) and Iliamna Lake had the largest difference between land and water warming trends (with land
warming at a faster rate than water).We further identified lake type (i.e. human-made or natural) and change
in lake surface area (i.e. shrinking, growing, neutral, or dynamic) as significant predictors of change in
temperature differences between surrounding land and surface water temperature. This analysis suggests
that combined terrestrial and aquatic remote sensing could be used to identify lakes undergoing water loss
or other environmental challenges across a broad spatial scale.

Introduction

Lakes play an important role in the environment, supporting biodiversity for a wide range of species and con-
tributing to nutrient and hydrological cycles. As lakes contain a majority of available freshwater on Earth,
humans also depend on lakes for drinking and irrigation water, transportation, food, and as energy sources
(Dörnhöfer and Oppelt 2016). While lakes are important for environmental functions, they also are impor-
tant indicators of anthropogenic environmental changes. In particular, lakes are sentinels of climate change
because they are sensitive to changes in the environment, including the land and air surrounding them. Stud-
ies reviewed by Adrian et al. (2009) have concluded that lakes serve as sentinels for climate changes because
they are well-defined, reflect climate changes in catchment, filter out random and short-term variability by
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integrating responses over time, and are globally present in different geographic locations. Among the
many indicators of climate change lakes provide, water surface temperature is of particular interest. Even
small changes in lake water surface temperature have profound effects on lake processes since the surface
layer of lakes interacts with the surrounding atmosphere and is where most biological production occurs
(O’Reilly et al. 2015). Factors such as lake depth, surface area, and volume determine the heat capacity and
maximum temperature of a lake (Kalff 2002). Since inland lakes have a relatively high heat capacity, their
temperatures have less short-term variability, making lake temperature an important indicator of climate
change for long-term studies (Torbick et al. 2016). Studies summarized by Reinart and Reinhold (2007)
show that surface temperature reflects changes in local and regional air temperatures over time, which is
useful in studying effects of climate change. Therefore studying land surface water temperature (LSWT) is
crucial to studying climate change.

Collecting in situ data from lakes or land across a broad geographic extend and over a long period of
time can be difficult due to lake location and resources available to monitor them, thus remote sensing has
become increasingly favorable for observing changes over time and space. Remote sensing is the science
of collecting data without being in direct contact with the object. Among different remote sensing observa-
tions, satellite remote sensing is very popular for variety of environmental applications. Sensors on satellites
measure the amount of radiation reflected from Earth’s surface. Different wavelengths of radiation can pro-
vide different information about surfaces. For example, infrared waves are used to measure heat emission,
which can provide surface temperatures for land and water (Dörnhöfer and Oppelt 2016). As of 2017, there
are approximately 600 satellites for Earth observations containing different instruments launched at varying
points in time that collect measurements at different intervals (Lavender 2017). Some of these satellites
have data available online for public use and easy access. The Aqua satellite, launched in 1999, contains the
MODIS instrument that collects measurements twice a day, making it a desirable satellite to use for exam-
ining high temporal resolution trends despite its coarse spatial resolution of 1 km (Kwok 2018). Extracting
information from satellite image pixels is laborious, or may not be the goal of a study. Many agencies have
developed products based on raw remote sensing data for scientists to use instead. There are algorithms
that have been developed to relate remote sensing data to abiotic or biotic processes for land, ocean, and the
atmosphere, but there are currently not many products designed for inland water data. This may be, in part,
because (as noted above) satellite spatial resolutions range from 1 m to 25 km, or their sparse acquisition
times (ranging from minutes to months). Thus more work needs to be done with remote sensing data and
inland lakes to advance the field and make large-scale in-land freshwater studies more feasible.

Remote sensing data are more comprehensive than in situ data because data can be collected for the en-
tire globe. Thus estimating land and lake surface water temperature change with remote sensing data al-
lows scientists to easily compare trends in light of climate change on a larger scale. Despite the lack of
inland products, studies have shown that remote sensing skin temperatures for inland lakes can be used
as a proxy for LSWT (Torbick et al. 2016; Grim et al. 2013; Reinart and Reinhold 2008; Oesch et al. 2005;
Sharma et al. 2015). Grim et al. (2013) used thermal infrared channels of MODIS images to construct
skin temperatures using an 8 step methodology, which accurately reflected the measured in situ temperature
oscillations and values. Torbick et al. (2016) used thermal infrared channels of Landsat to construct skin
temperatures for 3955 lakes from 1984 to 2014. Over the 30 year time frame, Torbick et al. (2016) was
able to analyze LSWT trends and found that lakes were warming on average. However, while air, land, and
ocean temperature trends are beginning to be documented using remote sensing data (O’Reilly et al. 2015),
we are unaware of any study that examines both adjacent land and inland water trends.

Being able to analyze temperature trends allows scientists to identify drivers of those trends. Since lakes
vary in size and shape, temperature patterns should also vary spatiotemporally. O’Reily et al. (2015) found
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that a combination of geographic location, depth, volume, and surface area explained the variation in tem-
perature trends across the globe. The spatial heterogeneity that this study found suggests that lake warming
trends depend not only on geographic location, but mostly on lake characteristics. In another study, Wool-
way et al. (2018) analyzed 20 years of remotely sensed LSWT data from global lakes and concluded that
lake morphometry specifically explains spatial variations in lake warming trends. Deeper areas of the lake
were found to have increased warming trends as opposed to shallower parts of the lake, contrary to cur-
rent understandings of lake warming (Woolway et al. 2018). Along with identifying drivers of temperature
trends, analyzing global lake data is important for understanding the relationship between lake tempera-
tures and other temperatures, such as air temperatures. This difference affects the atmospheric boundary
layer between the lake surface and atmosphere, which in turn impact gas transfer between lakes and the
atmosphere. Woolway et al. (2017) analyzed temperature differences between the air above lakes and the
LSWT of 39 lakes across the globe and found that lake characteristics and geographic location also affect
atmospheric boundary layer stability,which is determined by differences between air temperature and LSWT
(Woolway et al. 2017).

This study used remote sensing data to compare LSWT with surrounding land temperatures. Presently,
many lakes around the globe are shrinking as a result of climate change and human activities. For example,
Lake Poopó has been shrinking due to climate change, drought, water diversion for agriculture, and mining
(Weiss 2018). To build on using remotely sensed lake skin temperatures as a proxy for LSWT and identi-
fying factors that cause lakes to be vulnerable to temperature changes, this study focused on addressing the
question: what factors make lakes vulnerable to differences in trends between LSWT and surrounding land
temperature? As shown in Woolway et al. (2017), studies have compared LSWT and air temperatures, but
no study has compared LSWT to the surface temperatures of the surrounding land temperatures of the lake.
By comparing the trend in the temperature difference between LSWT and surrounding land, we were able to
determine if LSWT and surrounding land temperatures had similar or different trends in water temperature
from 2002 to 2018. Remote sensing has become increasingly popular for analyzing land and ocean surfaces,
but using remote sensing data to analyze changes of inland lakes can advance the field. Based on previous
studies identifying drivers of inland lake temperature changes, we hypothesized that adjacent land use or
land cover (LULC), lake depth, surface area, latitude and longitude, precipitation, elevation, and lake type
may contribute to temperature changes in lakes from local and climate factors.

Methods and Materials

We analyzed 95 lakes in the United States with surface areas larger than 100 km2 (Fig. 1). For each lake,
we obtained skin temperatures and surrounding land temperatures from the MODIS instrument on the Aqua
satellite. The surrounding land area was defined as the land surrounding the lake with an area that is nine
times the surface area of the lake (Fig. 2). MODIS Aqua provides daily measurements taken at 1:30 AM
and 1:30 PM from June 2002 to May 2018. We used the maximum daily temperature for each day (1:30
PM). We used temperature measurements processed from MODIS images by students at the City University
of New York (CUNY), New York City College of Technology. The students used the MODIS MYD11A1
product. For each lake temperature, CUNY students used an average of all the lake pixels to calculate the
LSWT per day. For the surrounding land temperature calculations, water bodies that were part of the defined
land area were removed, and CUNY students used an average of all the remaining land pixels to calculate
the surrounding land temperature. Note that the thermal bands of remote sensing satellites provide lake skin
temperature, which is different than LSWT. Lake skin temperature is the temperature of the top of the water
surface, whereas LSWT is the temperature of the water from the water surface to a few meters below the
water surface.
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For each lake, we estimated the net temperature change between surrounding land and lake surface water
using a Bayesian linear model. Bayesian statistics is an area of statistics that aims to use prior information
and probabilities to estimate unknown parameters. To do so, the Bayes equation,

P(θ |Y ) = P(Y |θ)P(θ)
P(Y )

, (1)

which can also be written as a proportionality,

P(θ |Y ) ∝ P(Y |θ)P(θ), (2)

provides a probability distribution for sampling to estimate those unknown parameters. Here, θ denotes
the unknown parameters to estimate and Y denotes the observed data. In equation 1, P(θ |Y ) is referred
to as the posterior distribution, which is the probability the parameters are correct in light of the ob-
served data. P(Y |θ) is referred to as the likelihood, which is the probability the data are correct in light
of the estimated parameters. P(θ) is referred to as the prior distribution, which is the probability of the
parameters imposed from prior information about the parameter restrictions. P(Y ) is the probability of
the data, and is dropped in equation 2 for proportionality purposes. When building a Bayesian model,
iterative updaters, such as Markov Chain Monte Carlo algorithm, use the Bayes equation to create the
posterior distribution, which sampling algorithms can then use to sample for correct parameter estimates
(Blangiardo and Cameletti 2015).

We used the Just a Gibbs Sampler (JAGS) package in R to estimate the slope, intercept, and error pa-
rameters for a linear model. We also included the month of temperature measurement as a fixed effect. The
model ran for 15000 iterations and we sampled from the last 5000 for parameter estimates. The independent
variable was time in days and the dependent variable was the difference between land and lake surface water
temperature in degrees Kelvin. Each day within my data range fell into one of the following cases: (1) both
surrounding land and lake surface water measurements were present, (2) neither surrounding land nor lake
surface water measurements were present, (3) only surrounding land temperature was present, (4) only lake
surface water temperature was present. In order to take the difference between the surrounding land and
LSWT, we treated cases (3) and (4) the same as case (2) so that we only used the days that fell into case (1)
for an even pairing of differences. Once we had the slope estimated for each lake, we used it to estimate the
net temperature difference change over the 17 years. Using a Bayesian linear model was advantageous with
this data set because one third of the days between the beginning and end dates did not have temperature
readings, and the Markov Chain Monte Carlo component allowed us to estimate missing data for a more
informative calculation of trend. Once we had the slope of the Bayesian linear model for each lake, we used
that slope to estimate the net change in temperature between the first and last day in the data sets.

After calculating the net change in temperature for each lake, we used univariate Bayesian linear mod-
els to determine which of the following lake features is significant in explaining the net temperature changes
for the lakes: latitude, longitude, lake surface area, type (human-made, natural), shore length, elevation,
average depth, average elevation of the lake’s watershed, area of barren land in the lake’s watershed, area
of cultivated land in the lake’s watershed, area of developed land in the lake’s watershed, area of forest land
in the lake’s watershed, area of water bodies in the lake’s watershed, area of shrub and herbaceous land in
the lake’s watershed, area of wetlands in the lake’s watershed, and changing surface area status (shrinking,
growing, neutral, dynamic). We created this last lake feature based on the annual surface area of the lakes
during the time frame of the data using annual MODIS land cover product (MOD44W). Lakes that were
consistently shrinking or growing during the 17 years were respectively classified in the shrinking or grow-
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ing category. Lakes that did not change surface area were classified in the neutral category. Lakes that both
shrank and grew during the 17 years were classified in the dynamic category to capture the variability in their
surface areas. Once we identified which lake features were significant, we included them in a final Bayesian
linear model to determine their effect sizes. The final model ran for 20000 iterations, and we sampled from
the last 2000. All parameters converged after 18000 iterations, determined from Gelman Rubin diagnostic
plots.

Results

We built the Bayesian linear model,

temperaturei = b1 +b2(dayi)+b3(Februaryi)+b4(Marchi)+b5(Aprili)+b6(Mayi)+b7(Junei)+

b8(Julyi)+b9(Augusti)+b10(Septemberi)+b11(Octoberi)+b12(Novemberi)+

b13(Decemberi)+ errori,

for each of the 95 lakes, where i indicates the day and b1 to b13 are the estimated parameters. The net tem-
perature changes between land and water over the 17 years of data ranged from -1.26 °C to 1.06 °C. Using
95% credible intervals, we found 12 lakes (Lake Hartwell, Sam Rayburn Reservoir, Lake Clark, Iliamna
Lake, Fort Peck Lake, Eufaula Lake, Wheeler Lake, Table Rock Lake, Grenada Lake, Selawik Lake, Lake
Mattamuskeet, and Seneca Lake) to have net temperature changes significantly different from 0, meaning
0 is not contained in the credible interval (Fig. 3). Note that Lake Hartwell had the smallest difference
between land and water temperature rates, and Lake Iliamna had the largest difference between land and
water temperature rates (Fig. 4, 5). The residuals for each of the 95 models were uncorrelated, and each
parameter converged by 10000 iterations (Fig. 6).

Of the 16 Bayesian univariate linear models previously described, we found type and changing surface
area status to be significantly related to the net temperature change between land and water. Using type and
changing surface area status, we built the final Bayesian linear model,

∆temperaturei = 0.21(Typei)+0.31(Growingi)−0.01(Neutrali)−0.24(Shrinkingi)−0.15+ errori, (3)

where i indicates the lake, Type is a binary categorical variable (human-made or natural), and Shrinking,
Growing, and Neutral are dummy variables for changing surface area status. The residuals were uncorre-
lated, and each parameter converged by 18000 iterations (Fig. 7).

Changing surface area status showed patterns with the net change in temperature between land and water.
The interquartile range of the net change in temperature for shrinking lakes is negative. The interquartile
range of the net change in temperature for growing lakes is more spread but greater than shrinking lakes. The
interquartile range of the net change in temperature for neutral lakes is close to zero. The interquartile range
of the net change in temperature for dynamic lakes is both negative and positive, capturing the variability of
the category (Fig. 8).

When comparing type and changing surface area status, the majority of human-made lakes are either in
the growing or neutral category, whereas the majority of natural lakes are either in the shrinking or dynamic
category (Fig. 9).

Discussion

The sign of the net change in temperature between surrounding land and lake surface water calculated for
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each lake indicates whether water or land is warming faster than the other. As seen in figure 5 if the net
change in temperature for a particular lake is positive, then the Bayesian linear model estimated that the land
surrounding that lake is warming faster than that lake’s surface water. As seen in figure 4 if the net change
in temperature for a particular lake is negative, then that lake’s surface water is warming faster than the land
surrounding that lake. This does not imply that the land temperature is warmer than the water temperature
or that the water temperature is warmer than the land temperature; it is only a measure of the rate of tem-
perature change relative to water and land. For example, Lake Iliamna had a net change in temperature of
0.53, as seen in figure 3. Since this value is positive, the land temperature was warming faster than the water
temperature for Lake Iliamna.

In figure 3, the 12 (green) that are significantly different from 0 indicate that the land and water temperature
trends for those 12 lakes do not have similar rates. The 83 (tan) lakes that have net changes in temperature
that are not significantly different from 0 can be broken into 2 categories. The first is represented by the
black brackets in figure 3. These have larger absolute values, so their credible intervals are much wider in
order to contain 0 as well as the estimated net change value. We are less certain of the estimated net changes
in temperature for the lakes in this category due variability in the data. The second category is represented
by the orange brackets in figure3. These have smaller absolute values and do contain 0 in their credible
intervals. Thus it is possible that net change in temperature for these lakes is 0 since their credible interval is
narrower around 0. Future work is needed to pinpoint which lakes in the second category have a net change
in temperature of 0 and to determine with more certainty the net changes in temperature for the lakes in the
first category.

The final Bayesian linear model given in equation 3 indicates that lake type (human-made or natural) and
changing surface area status contribute similarly in effect size to predicting net change in temperature. Since
lake type is a significant predictor of net change in temperature, it is worth noting studies that have found
differences between them. Human-made and natural lakes differ in water source, bathymetry, management,
and geographic distribution (Hayes et al. 2017). Lake types also differ in chemical and biological content.
For example, total phosphorous levels have been found to be different between natural and human-made
lakes since human-made lakes tend to have higher flushing rates and larger inputs of sediments containing
phosphorous due to human activity (Canfield 1979). Studies have also found differences in trophic struc-
tures of phytoplankton between natural and human-made lakes, hypothesized to be a result of regulatory
regimes humans impose on human-made lakes, such as reservoirs (Naselli-Flores and Barone 2000). Since
human-made lakes and natural lakes differ in characteristics, lake type is considered in lakes and climate
change studies (Hayes et al. 2017). Thus it is understandable that we found lake type in this study to be a
significant predictor of net change in temperature between surrounding land and lake surface water. Future
studies could further investigate the relationship between lake type and net change in temperature, determin-
ing whether human management of lakes has an effect on the surrounding land and lake surface water trends.

When isolating lake type and changing surface area status from the final Bayesian linear model, a sug-
gestive pattern emerges from the changing surface area status variable, as seen in figure 8. Most of the
shrinking lakes are negative, which indicates that the water is warming faster than the land temperature for
those lakes. This suggests that shrinking lakes with faster warming water temperatures are more suscep-
tible to water loss, whereas the growing lakes with faster warming land temperatures are less susceptible
to water loss. This suggests that net change in temperature could be used to predict if lakes are vulnera-
ble to shrinking or growing. As lakes are shrinking and growing around the world, the shrinking lakes are
of particular concern given humans and the environment rely heavily on them for resources and diversity
(Weiss 2018; Dörnhöfer and Oppelt 2016). Future work is needed to use land and water trend comparisons
to identify lakes undergoing water loss or related environmental challenges.
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Together in a Bayesian linear model, lake type and changing surface area status predict net change in tem-
perature. Future work could also be done to identify the relationship between lake type and lake water loss.
Preliminary analysis in figure 9 suggests that natural lakes are more susceptible to water loss than regulated
human-made natural lakes, which could be supported by the differences between lake types highlighted in
Hayes et al. (2017).
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Largest lakes of the United States by volume
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Figure 1: Pinpointed locations of 95 largest lakes (excluding the Great Lakes) for analysis in the United
States with surface areas greater than 100 km2.

Figure 2: To calculate surrounding land temperatures for each lake, we used the land area in the white box,
excluding the lake area boarded in orange. The land area is 9 times the lake area, since three times the length
and width of the lake was used to create the white box area. Yellow indicates the length of the lake, and
green indicates the width of the lake.
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Figure 3: Each line indicates the net change in temperature between surrounding land and lake surface water
temperature between 2002 and 2018. These values were predicted using the slope of the Bayesian linear
model for each lake (n = 95). Using 95% credible intervals, the green lines indicates lakes whose CI did not
contain 0, meaning we are 95% certain these lakes had different land and water trends. The tan lines indicate
lakes whose CI contained 0. If the estimate was close to 0, then we are more certain the land and water had
similar trends (orange bracket), whereas if the estimate was large, we are less certain on that estimate (black
brackets).
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Figure 4: Land and water trends for two lakes that whose water temperature had a higher rate than the land
temperature, meaning the estimated net change in temperature given in figure 3 was negative. Left: In figure
3, Lake Mead is the bottom tan line. Right: In figure 3, Lake Hartwell is the bottom green line.

Figure 5: Land and water trends for two lakes that whose land temperature had a higher rate than the water
temperature, meaning the estimated net change in temperature given in figure 3 was positive. Left: In figure
3, Lake Iliamna is the top green line. Right: In figure 3, Lake McConaughy is the top tan line.
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Figure 6: Klamath Lake trend difference model validations. Uncorrelated residuals for the final model
(left). Gelman Rubin convergence plot for the intercept, converged around 5000 iterations (right). All other
parameters in the model converged similarly. All lakes for each of the 95 trend difference models reflected
these residual and Gelman Rubin convergence plots.

Figure 7: Final model validations. Uncorrelated residuals for the final model (left). Gelman Rubin conver-
gence plot for the intercept of the final model, converged around 5000 iterations (right). All other parameters
in the final model converged similarly.
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Figure 8: Changing surface area status isolated with net change in temperature difference between land
and water. Each purple dot represents one lake (n = 95). The shrinking lakes interquartile range is below
0, indicating that shirnking lakes have water temperature rates that are higher than land temperature rates.
Growing lakes median is above 0, indicating that growing lakes have land temperature rates that are higher
than water temperature rates. Neutral lakes interquartile range is close to 0, indicating that neutral lakes
have similar land and water rates. Dynamic lakes interquartile range is spread over positive and negative
ranges, indicating the nature of this variable category.

Figure 9: Preliminary analysis on lake type and changing surface area status. The blue indicates the propor-
tion of natural lakes, and the yellow indicates the proportion of human-made lakes in each changing surface
area status category.
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