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Abstract. Amphibian populations are threatened globally by anthropogenic environmental change (Wake and 
Vredenberg 2008) and Batrachochytrium dendrobatidis (Bd) (Skerratt et al. 2007). A closely related new 
fungal pathogen of salamanders, Batrachochytrium salamandrivorans (Bsal), has recently left its native 
range in Asia and decimated some salamander populations in Europe (Martel et al. 2014).  Bsal has not been 
detected in the United States (Yap et al. 2015), but given the U.S. has the most salamander biodiversity on 
Earth (Richgels et al. 2016), predictive assessments of salamander risk are necessary to proactively allocate 
research and conservation efforts into disease mitigation. The present study mapped the risk of salamander 
populations to Bsal in the US based on the predicted environmental suitability of the Bsal pathogen in the 
US, and the distribution of potentially susceptible species to the pathogen. To predict the environmental 
suitability of Bsal, an ecological niche model was developed based on the pathogen’s native range in Asia 
and validated on the observed invasive range in Europe using bioclimatic, land cover, elevation, soil 
characteristics, and human modification variables. Potentially susceptible salamander species were 
determined using a machine learning model that correlated known life history traits of a species with literature 
derived data on actual and predicted susceptibility to Bsal for tested and untested species. Environmental 
suitability, number of susceptible species, and risk to Bsal infection were highest in the Pacific Northwest, 
Gulf and Atlantic coasts, and inland states east of the plains region.  The overlap of these three metrics for 
risk of salamander populations to Bsal provides direction for researchers and conservationists in efforts to 
protect already threatened salamanders from an additional pathogenic disturbance. 
  

INTRODUCTION 

Globally, amphibians are being threatened by chytridiomycosis, a disease caused by two pathogenic chytrid 
fungi, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) (Yap et al. 
2017).  Bd was discovered prior to Bsal in the late 1990s and has since infected at least 700 amphibian species 
(Lips et al. 2016).  Although susceptibility to both pathogens varies among species (Bancroft et al. 2011, 
Carter et al. 2019, Sabino-Pinto et al. 2018), Bd has led to the population decline of over 200 species of 
amphibians (Skerratt et al. 2007) and continues to threaten amphibian biodiversity over 20 years later (Wake 
and Vredenberg 2008).  Bsal, which is endemic to Asia and specifically targets salamanders, spread into 
Europe around the late 2000s and decimated a population of fire salamanders in the Netherlands (Martel et 
al. 2013).  Thus far, there has been no evidence for Bsal presence in North America, but due to the continent’s 
high salamander biodiversity, invasion of Bsal poses a serious threat to North American ecosystems (Richgels 
et al. 2016, Yap et al. 2015).  Given the fragility of amphibian populations in the face of Bsal and Bd, 
predictive risk assessments for the vulnerability of salamanders in the continental United States (US) to Bsal 
are necessary to allocate prevention and mitigation efforts by conservation managers. 
 
These risk assessments should be based on both the environmental suitability for Bsal and the susceptibility 
of different species to Bsal infection in order to identify areas that are most at risk for salamander population 
declines.  Past research efforts have sought to identify the areas in the US that are most vulnerable to an 
invasion of Bsal, but they considered risk to salamander populations based on how likely they are to encounter
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Bsal due to trade, not how susceptible individual populations are to Bsal. First, the Pacific coast, southern 
Appalachian Mountains, and mid-Atlantic regions are predicted to have the highest risk from Bsal infection 
in the US based on the environmental suitability of each county for Bsal, salamander species richness, and 
an assessment of salamander import and trade data, which indicate where Bsal might first invade (Richgels 
et al. 2016).  This risk assessment is useful because it identifies areas in which actions should be taken to 
prevent Bsal invasion through trade.  However, it does not consider species differences in susceptibility to 
infection. Also, the risk assessment estimates environmental suitability of Bsal by matching county 
temperature data with the lab measured optimal temperature for Bsal, and not from an analysis of the 
multidimensional environmental constraints of Bsal in its native range. A more robust model of the 
environmental suitability of Bsal would be done using ecological niche modelling (ENM), which is a method 
to estimate the geographical distribution of organisms based on correlations between their occurrence and 
the local multidimensional environmental constraints (Johnson et al. 2019).  In the case of chytrid fungi, Bd 
is constrained by both temperature and precipitation (Olson et al. 2013), both of which would be captured in 
an ENM along with other factors.  
 
In a second study by Yap et al. (2015), the southeastern US and Pacific coast are predicted to have the highest 
risk for Bsal based on an ENM that estimated the environmental suitability for Bsal. Similar to Richgels et 
al. (2016), risk is associated with areas of high species richness and import and trade levels for salamanders.  
However, the ENM used by Yap et al. (2015) has been criticized by Feldmeier et al. (2019) as biologically 
irrelevant because it is created for the US using potential Bsal salamander host occurrence data from the 
native range in Asia, rather than data of Bsal pathogen occurrences themselves, which is an analysis that may 
overlook places in the US where Bsal could exist and its hosts could not or vice versa. 
 
While ENM is useful for discerning environmental suitability, Bsal invasion also depends on host 
susceptibility to infection, which varies across species. Previous risk assessments do not consider these 
differences in susceptibility of various salamander species to Bsal in risk evaluation (Richgels et al. 2016, 
Yap et al. 2015).  Since some salamanders are asymptomatic with the infection (Carter et al. 2019, Sabino-
Pinto et al. 2018), it is important to know which species are more susceptible and where they exist in the US 
relative to areas likely to be habitable by Bsal in order to properly channel prevention and mitigation efforts.  
A prediction based on differences in susceptibility to Bsal would be more accurate to population declines of 
salamanders, which is the ultimate threat of Bsal (Wake and Vredenberg 2008). Therefore, as far as we know, 
no study to date has created a risk model for Bsal invasion based on the combination of a credible ENM and 
species differences in susceptibility to disease, which would together give a more robust prediction of the 
threat to biodiversity from Bsal than the import and trade oriented risk assessments by Yap et al. (2015) and 
Richgels et al. (2016). 
 
We identified areas in the US at risk for salamander population declines from Bsal by combining Bsal 
suitability with a spatial assessment of the ranges of salamander species with varying susceptibility to Bsal.  
Therefore, this study was a two part process in which we first used an ENM to assess where in the US is 
suitable for Bsal based on its known environmental constraints in its native range.  Then, we used a machine 
learning approach to correlate life history traits with literature derived data on Bsal infection in salamanders, 
and we predicted the likelihood of infection in salamanders based on their life history traits.  A study with a 
similar aim was conducted globally by Rödder et al. (2009) for Bd, in which they combined an ENM for Bd 
occurrence with the known ranges of amphibian species with life history traits that made them more 
susceptible to population declines from Bsal infection as determined by Bielby et al. (2008). 
 
We expanded on past Bsal suitability models in the US and, to our knowledge, did the first assessment of life 
history traits that predict Bsal susceptibility. First, in contrast to Bd (Weldon et al. 2004), Bsal has more 
recently left its native range and invaded other areas (Beukema et al. 2017). As a result, we used ENM 
techniques that test the model, trained using the native range of Bsal, on data from Europe to assess its 
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performance in an invasive range for which pathogen occurrence data exist, similar to the methods used for 
predicting the range of Bsal in Mexico by Basanta et al. (2019).  To determine the important life history traits 
for salamanders that determine susceptibility to Bsal we will use a machine learning approach similar to 
Bancroft et al. (2011) that will identify what the probability a species will be susceptible to Bsal infection.  
Together, robust ENM modelling of Bsal as an invasive pathogen coupled with machine learning techniques 
to determine susceptibility of salamanders to Bsal will give a useful model for the vulnerability of salamander 
populations to Bsal in the US. We expect to find areas that are both a suitable environment for Bsal and have 
salamanders that are highly susceptible to infection, and our results will direct conservation efforts and future 
research to those areas. 
 

METHODS 
 
The present study will combine two objectives to create a spatially explicit risk assessment for salamander 
population decline due to Bsal.  First, we will create an ENM for the Bsal infection that determines where in 
the US Bsal is likely to occur based on its environmental preferences in its native range in Asia.  Then, we 
will use machine learning to predict which life history traits make a salamander species susceptible to Bsal 
infection, and we will determine areas of high salamander susceptibility using range maps of each species. 
By combining these two methods, we can determine where in the US there is both high likelihood of Bsal 
occurrence and susceptibility of salamanders to infection. 
 

Ecological niche model 
 
We created an ENM of Bsal to predict its likelihood of occurrence in the US using the MaxEnt algorithm as 
implemented in the dismo package (Hijmans et al. 2017) in R version 4.0.1 (R Core Team 2020).  First, we 
identified and collected spatially explicit datasets for variables that we deemed potentially important for 
predicting Bsal occurrence based on past research.  Then, we eliminated variables that were highly correlated 
in the native range.  We used these final variables to create an ENM of Bsal in its native range, and, based 
on this model of the native range, we predicted the occurrence of Bsal in the US.  To assess how well our 
model of Bsal in the native range transfers to an invasive range for the pathogen, we tested how well the 
model predicts already observed occurrences of Bsal in its European invasive range. 
 

Data collection and preparation 
 
We searched past literature on both Bsal and Bd and found studies that describe how environmental variables 
predict chytrid occurrence globally or locally in order to identify potential predictors of Bsal for our ENM.  
Our literature search was structured in Google Scholar by looking at all articles in the first five pages of 
results using the search terms “Batrachochytrium salamandrivorans” or “Batrachochytrium dendrobatidis” 
and “environmental constraints.”  We also examined other cited papers from each article.  Based on 
commonalities between the literature and the availability of datasets, we decided to use Global Human 
Modification (GHM) (Kennedy et al. 2018,  Bacigalupe et al. 2019, Spitzen van der Sluijs et al. 2014), 
elevation (Amatulli et al. 2018, Bacigalupe et al 2019, Bielby et al. 2008, Olson et al. 2013), 12 land cover 
classifications (McMillan et al. 2019, Murray et al. 2011, Scheele et al. 2014, Tuanmu et al. 2014), soil pH 
(Hengl et al. 2017, Kärvemo et al. 2018), and the 19 bioclimatic layers from Worldclim (Fick and Hijmans 
2017, Basanta et al. 2019, Beukema et al. 2018, Puschendorf et al. 2008, Rödder et al. 2009).  Although it 
has not previously been studied, we also decided to include soil organic carbon (Hengl et al. 2017), due to 
the important role salamanders play in carbon cycling by increasing litter retention and carbon capture (Best 
and Wesh 2014), which may correlate with areas of Bsal salamander hosts. 
 
For creating, evaluating, and applying the model, we defined three study extents which were in Asia, Europe, 
and the US respectively.  The native study extent encompassed an area 20 percent greater than the range of 
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native Bsal hosts determined by Laking et al. (2017), Martel et al. (2014), and Yuan et al. (2018), whose 
range maps are made available by the IUCN (IUCN 2020).  We used the same study extent defined in 
Beukema et al. (2018) for the invasive range.  Finally, our study extent for the US bounded the lower 48 
states.  Occurrence points for Bsal in Asia and Europe were taken from Beukema et al. (2018) and González 
et al. (2019). All of our predictor variable datasets were then cropped to the three study extents and resampled 
to achieve a resolution of 10 kilometers, which was chosen to capture the uncertainty in Bsal occurrence 
points in a single grid cell. 
 
Background points were sampled randomly in areas around the location of salamander occurrences in the 
native range to reflect where in that area would be reasonable places for Bsal to exist.  We downloaded the 
occurrence of salamanders from the Global Biodiversity Information Facility (GBIF) (GBIF.org 2020) in the 
native range, and we eliminated entries with uncertainty higher than our study resolution, no coordinate data, 
duplicates, and common issues flagged by GBIF.  With the remaining occurrences, we defined a buffer of 50 
kilometers around each point and sampled 10,000 points randomly within the cumulative area. 
 

ii. Model preparation 
 
We determined which of our predictor variables were correlated with each other in the native range using a 
Pearson’s correlation coefficient of greater than or equal to 0.8.  We also did a principal coordinate analysis 
(PCA) of the predictor variables and found the magnitude of variation that each variable drove.  We only 
looked at the first 90 percent of variation.  For each group of correlated variables that we found, we chose 
the variable which drove the highest variation based on the PCA to keep in our ENM model.  Based on these 
analyses, bioclimatic variables 2 (mean diurnal range), 3 (isothermality), 4 (temperature seasonality), 9 (mean 
temperature of the driest quarter), 14 (precipitation of the driest month), 15 (precipitation seasonality), 18 
(precipitation of the warmest quarter), 19 (precipitation of the coldest quarter), all land cover classifications, 
elevation, soil pH, and soil organic carbon were included in our modelling attempts. 
 

iii. ENM implementation and prediction 
 
The ENM was created using MaxEnt with the ENMeval package (Muscarella et al. 2014) and dismo packages 
(Hijmans et al. 2017) in R (R Core Team 2020).  First, we created the ENM using data from the native range.  
Parameters for the final MaxEnt model were found using the ENMeval package, which generates multiple 
MaxEnt models across multiple combinations of regularization multipliers (RM) and feature class 
combinations (FC).  The RM values were set at increments of 0.5 and FCs were created using combinations 
of “linear,” “quadratic,” “hinge,” threshold,” and “product” binary settings. We extracted the values for RM 
and FC from the MaxEnt model generated with the lowest delta value of the corrected Akaike’s information 
criteria (dAICc), which was equal to 0 to maximize model fitness.  Based on this dAICc score, we created 
our final MaxEnt model with an RM of 4.0 and an FC of “linear” and “quadratic”. 
 
Then, using the MaxEnt model we created in the native range, we predicted the likelihood of Bsal occurrence 
in the native, invasive, and US ranges.  We used three metrics to evaluate our model in the native range.  Area 
under the curve (AUC) and true skills statistic (TSS) describes the relationship between the true positive rate 
and false positive rate or true negative rate respectively. The omission rate measures the number of omitted 
true positive points by the model at various thresholds. We calculated the omission rate in the European range 
to see how many true positive points were omitted in an invasive range and validate our model for use outside 
of Asia.  For the TSS and omission rate we compared model performance across three thresholds, minimum 
presence, lowest 10% of presence, and maximum sensitivity and specificity. The thresholds calculated the 
model metrics using a value of suitability set by, the lowest suitability value a, to which a presence point 
corresponds, the suitability value of that bounds the lowest 10% of presence points, and the suitability value 
that maximizes the true positive rate and true negative rate, respectively. We also compared the permutation 
importance of each of our predictor variables in the final model, and plotted the relationship between the 
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values of each predictor and its prediction values for the likelihood of Bsal occurrence (Supplementary 
information).  To aid conservation managers, we also show which quarter of the United States of America 
contains the highest abiotic suitability to Bsal. Our measure of suitability in each study range is a probability 
of Bsal occurrence.  
 

Boosted regression tree analysis 
 
To know which salamander species are most susceptible to Bsal infection, we correlated salamander life 
history traits with Bsal occurrence in species using a machine learning approach.  First, we collected data on 
salamander species with positive or negative test results for Bsal and we combined these data with publicly 
available salamander trait data.  Then, we used a boosted regression tree (BRT) to find multiple correlations 
between trait data and Bsal occurrence and predict the occurrence of Bsal in species based on their traits.  
Finally, we combined maps of salamander extent with Bsal susceptibility as determined by our model to 
show which areas of the US have the highest risk of salamander infection due to Bsal. 
 

Data collection 
 
We found how salamander species tested for Bsal from past studies that surveyed Bsal infection across 
multiple species.  The first five pages of a Google Scholar search with the search terms “Batrachochytrium 
salamandrivorans” and “infection” or “experiment” were used to find these studies and their cited studies.  
For the purpose of knowing if a species can be infected by Bsal, we had to distinguish between surveys of 
Bsal infection in the wild from surveys of captive or experimental animals because a negative test result for 
a wild population of salamanders may reflect the lack of Bsal presence in an area rather than a species’ 
resistance to the fungus.  On the other hand, we were confident that a negative test result in captive 
salamanders more likely reflected a species resistance to the fungus because Bsal is considered to be 
widespread in captive populations in Europe (Sabino-Pinto et al. 2018), which is from where we collected 
the majority of our data (Fitzpatrick et al. 2018, Sabino-Pinto et al. 2018).  We also collected data from 
studies that experimentally tested whether or not a species was susceptible to Bsal infection through 
inoculation with the fungus (Barnhart et al. 2019, Bates et al. 2019, Carter et al. 2019, Martel et al. 2014).  
We removed subspecies because life history trait data was not available for this taxonomic level, and if any 
subspecies were positive for Bsal we made the species from which they stem positive.  Also, we removed 
multiple records for the same species.  If any of the multiple records were positive for a species, we recorded 
the species as positive, even if there were other negative test results for the species.  If any species tested 
positive in the wild based on our occurrence data from our ENM, we recorded them as positive here.  
Furthermore, if there were other species in the same location in the wild as the species that tested positive 
from our ENM data, and those species tested negative, we recorded those species as negative because we 
assumed they had high likelihood of contact with Bsal (e.g. González et al. 2019). 
 
We collected trait data for 619 salamander species from the Amphibio dataset, which is the number of 
salamander species discovered by the year 2011 (Oliveira et al. 2017).  Binary traits came in the following 
groups, habitat, diet, diel, seasonality, and breeding strategy.  A species was a combination of the traits in 
those categories, for example, either nocturnal, diurnal, or crepuscular or some combination of the three.  
Where data on a trait was not recorded in past literature for a species, the Amphibio dataset includes NA 
values (Oliveira et al. 2017).  As a result, binary traits had either an NA or one value.  However, BRTs require 
zero values as well to properly function.  We decided to make all NA values zero for binary traits, where at 
least one binary trait within its grouping was not NA for a species.  This assumption is reasonable because 
we consider the binary traits that are equal to one for a species to be the primary trait of a specific grouping 
since they were found first. 
 
All 619 species were used to create our BRT model, and the infection status of each species for Bsal fell into 
one of three categories, which were either a positive record, a negative record from the literature, or a negative 
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record for species in the AmphiBio dataset but had not been tested for Bsal.  We applied weights for each of 
these categories calculated as the multiplication product of the confidence we had in the accuracy of the 
infection status for showing Bsal susceptibility for each species and the proportional representation of each 
category in the dataset.  We had the least confidence in test results for species with no data on Bsal, which 
was a confidence value of one.  Species that were negative based on the literature were assigned a confidence 
value of two.  Finally, we were twice as confident in the positive records as we were for the negative records 
based on the literature, so we assigned positive records a confidence value of four.  Within each category, 
confidence values were multiplied by values for representation of each category in the dataset.  Since, 
negatives based on no data far outnumbered the other two categories, the representation value was equal to 
how much less frequently the positive and negative based on a test result categories appear in the data in 
comparison to the negatives based on no data.  Therefore, the representation value was equal to the proportion 
of the data that was negative based on no data divided by the proportion of the data in each of the other 
categories. 
 

ii. Model preparation and execution 
 
We used the gbm package (Greenwell et al. 2020) in R (R Core Team 2020) to implement our BRT model. 
To make predictions, the BRT uses a subset of the provided data to combine multiple regression models and 
then tests the accuracy of the model on the remaining data (Elith et al. 2008).  Model hyperparameters, 
including the learning rate and variable interaction complexity, were maximized by testing multiple 
hyperparameter combinations and finding the combination of parameters which gave the best testing data 
AUC, using a fivefold cross validation, because there was low variation in training data AUC across 
hyperparameter combinations. A learning rate of 0.001 and an interaction complexity of three were the 
optimal model parameters for our model.  Given the stochastic nature of model predictions, we found the 
average model metrics, including variable importance, AUC, optimal trees, and marginal effect, with these 
parameters by bootstrapping the model 5 times.  After the one round of bootstrapping, we removed the 
variables with zero importance from the rest of the analysis and redid the bootstrapping for final model 
metrics.  We also bootstrapped a null model with separately randomized Bsal test results and their 
corresponding weights for each species to determine a corrected test AUC and ensure that our model 
predicted better than random.  Each bootstrapping run included 5 bootstraps, and 80% of the data was used 
for training and 20% of the data was used for testing. 
 
Using the optimal model parameters, we then predicted the probability of Bsal infection for each species 
based on our trait variables. To create a binary prediction result, any species that was at least 50% likely to 
be susceptible to Bsal we labeled as susceptible, and any species less than 50% likely to be susceptible to 
Bsal was not susceptible. We evaluated our model at this stage by comparing the prediction for each species 
to its literature derived Bsal test result and finding the number of false positives and negatives and true 
positives and negatives. Using this assessment of prediction, we tried two other weighting schemes by 
applying no weights and only weights for confidence. The aforementioned scheme gave the best results by 
minimizing false positives and negatives and maximizing true positives and negatives. 
 

iii. Spatial analysis 
 
We found the number of salamanders at risk across the US as the percentage of salamanders susceptible to 
Bsal relative to salamander richness in an area.  All salamander range maps for the US were downloaded 
from IUCN Red List (IUCN 2020).  At a resolution of 100 kilometers, we found the total number of ranges 
that overlapped a grid cell to calculate species richness.  The same method of summation was used to calculate 
the total number of species susceptible to Bsal in each grid cell.  Finally, the percentage of salamanders 
susceptible to Bsal in each grid cell was the quotient of the number of species susceptible divided by species 
richness. 
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iv. Risk analysis 
 
The product of the percentage of salamanders susceptible to Bsal and the ENM prediction gave the final 
estimate of risk of salamanders to Bsal in a specific location in the US.  We normalized the value for risk in 
every grid cell in the US by diving by the maximum predicted risk value in the US.  Also, we show which 
quarter of the country is most at risk from Bsal by highlighting areas in the top quartile of risk factor values. 
 

RESULTS 
 
In the native range the ENM had an AUC of 0.90 (Table 1).  The TSS was lowest for the minimum presence 
threshold and increased by about half at the lowest 10% of presence points threshold.  Similar to omission 
rate, it was highest using the maximum sensitivity and specificity threshold.  Omission rate remained below 
20% for all thresholds and was below 5% for the minimum presence threshold.  The omission rates in the 
invasive range remained below 15%.  They approximately doubled from the minimum presence and 
maximum sensitivity and specificity to the lowest 10% threshold. 
 
The most important variables for prediction were bioclimatic variables two (mean diurnal range) and four 
(temperature seasonality), presence of evergreen deciduous needleleaf trees, and presence of herbaceous 
vegetation (Supplementary information). These variables were at least five times more important than all 
other variables. All of these variables were inversely related to the presence of Bsal (Supplementary 
information). 
 
In both the native and invasive range, the most suitable places predicted for Bsal tend to be close to coastlines 
or on islands (Figure 1).  Coastlines with suitability above 0.75 in both of these ranges include Vietnam, 
Norway, and Taiwan.  The same trend applies to the US where places such as the Rocky mountain and plains 
regions have low suitability for Bsal while areas such as the Pacific Northwest, Florida, and the Gulf and 
Atlantic coasts (Figure 1).  An exception is the Appalachian mountain region and other areas in the eastern 
half of the country which are all included in the quarter most suitable areas for Bsal in the US (Figure 2).  
However, based on the ENM the US is generally less suitable for Bsal than Europe and Asia (Figures 1 and 
2). 
 
The BRT model metrics were a training AUC of 0.99, a testing AUC of 0.90, a corrected AUC of 0.85, and 
an optimal number of trees of 1601.  The model predicted less than 10 false results, which corresponds to 
accurate predictions greater than 91% of the time (Table 2). Maximum longevity and mean body size were 
both at least two times more influential for prediction than the other variables in the model (Figure 3).  Both 
of these variables predict a maximum susceptibility around their median values (Figure 4).  Furthermore, as 
the maximum litter size increases, the third most important variable (Figure 3), susceptibility to Bsal infection 
also increases (Figure 4).  Finally, inclusion in the family Salamandridae is more than twice as important for 
predicting Bsal susceptibility as inclusion in any other Caudata group (Figure 3), and inclusion in this family 
means increased susceptibility to Bsal (Figure 4). 
 
The highest number of susceptible salamanders occurs in the southern Appalachian region, while moderate 
amounts occur throughout the states east of the plains region and the northern Pacific coast, and these areas 
roughly correspond with areas of the moderate to high salamander species richness in the country (Figure 5).  
The product of the percent susceptible species and pathogen suitability in each location shows that the Gulf 
coast of Texas and Louisiana, the Pacific Northwest, and Florida appear to have the highest risk for infection 
of Bsal (Figure 5).  However, most areas in states east of the plains region have risk of species infection by 
Bsal (Figure 5), and all of these states are at least partially included in the quarter of the country most at risk 
(Figure 6).   
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DISCUSSION 
 
The United States has the highest biodiversity of salamanders on Earth (Yap et al. 2015).  We show that areas 
of the most Bsal suitability and salamander susceptibility to infection overlap in the US, a finding that 
demonstrates the both demonstrates the need for and gives direction for future conservation actions.  An 
ENM was used to predict the suitability of the environment in the US for the Bsal pathogen, which was 
combined with predictions of species susceptibility to infection from Bsal to estimate risk to salamanders 
across the country. 
 
First, the ENM model gives a strong prediction for areas in the country that would be suitable for the Bsal 
pathogen because of its strong model metrics. In the native range, the model’s AUC was high, the omission 
rate remained below 20% at all thresholds, and the TSS was above 0.5 for two thresholds.  The places of 
highest pathogen suitability in the US are relatively close to coastlines, which is likely driven by the model’s 
reliance on high mean diurnal range and temperature seasonality that exist near coastlines (Fick and Hijmans 
2017). 
 
One potential issue with this ENM model is the inherent difficulty in accurately predicting suitability into an 
invasive range in the US with no records of Bsal there to test the prediction (Beukema et al. 2018). We 
address this issue of model transference by seeing how well the model performs on a different invasive range 
in Europe for which there are Bsal occurrence records, similar to the workflow of Basanta et al. (2019).  There 
was a low possibility of overfit by our model prediction as signaled by the omission of only five to ten percent 
of Bsal records in the European invasive range depending on the omission rate threshold. Therefore, we 
conclude that the ENM created in the native range projects well into an invasive range. This result is in 
accordance with the finding from Beukema et al. (2018) that Bsal in Europe only occupies a subset of the 
natively occupied environmental space, which proves both good model performance in an invasive range and 
the likely expansion of Bsal throughout Europe. Although strong model performance in the invasive range 
proves the ENM works well outside of the pathogen’s native range, future work should see to what extent 
the environmental space in the US overlaps that of the native range to specifically know how well ENM 
predictions will transfer from the native to US range. Even though the model transfers well into an invasive 
range, the US range might have a much different environmental space than other invasive ranges and the 
native range. 
 
One reason to suspect misaligned environmental spaces and poor model transference between the US and 
southeast Asia would be that the main drivers of Bsal occurrence, temperature seasonality and mean diurnal 
range, are generally inversely related in these two ranges (Fick and Hijmans 2017).  However, a demonstrated 
preference of Bsal for coastal areas supports our predictions for pathogen suitability in the US.  Both 
bioclimatic variables are high in the native range, they are low across the US.  If there were misaligned 
environmental spaces, environmental constraints in the US that are similar to low temperature seasonality 
and mean diurnal range but not present in the native range may permit Bsal survival that our model does not 
predict.  In contrast, one mechanism for this trend in bioclimatic variables may be the proximity to coastal 
areas (Fick and Hijmans 2017), and most Bsal occurrences in the native range are close to the Pacific Ocean.  
Likewise, the most suitable areas for Bsal in the US are close to the coastlines, and the same is generally true 
in the invasive range.  Basanta et al. (2019), Beukema et al. (2018), and Puschendorf et al. (2009) found 
similar trends in their work where the southern Gulf coast of Mexico, northwestern coast of Europe, and 
Costa Rica showed high suitability for Bsal respectively.  In fact, a widespread sampling within the native 
range in China found no occurrences of Bsal, and those sampling locations occur mostly inland (Zhu et al. 
2014).  Furthermore, Olson et al. (2013) found that the other chytrid fungus, Bd, occurred less with increasing 
temperature range, which aligns well with our findings in the native range. Therefore, the fact that Bsal 
suitability is generally limited to the coastlines of the US may be due to its preference for these areas, rather 
than poor model transference due to misaligned environmental spaces. 
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Although Bsal suitability is generally low across the country, we show the quarter of the country by area that 
is most suitable for Bsal, including the Appalachian mountain range, the southeastern Gulf and Atlantic 
coasts, and the Pacific Northwest.  In order to discern appropriate conservation actions in these regions, 
however, it is important to know if the areas suitable for the Bsal pathogen are also inhabited by salamanders 
that are susceptible to Bsal infection.  We used a machine learning approach (BRT) to predict the 
susceptibility of salamanders to Bsal based on their life history traits. Our BRT model was able to predict 
salamander susceptibility to Bsal with 90% accuracy, and also showed low false positives and low false 
negatives in predictions.   The most important variables in these predictions were max longevity, body size, 
and max litter size.  Compared to other salamander species, we find that Bsal hosts tend to have intermediate 
body sizes and life spans while still achieving high fecundity.  We postulate that susceptible species with 
intermediate body size of between 250 and 750 millimeters and max longevity of around 20 years might 
represent a tradeoff between increased contact rate with the pathogen over the body’s surface area and 
throughout life (Kuris et al. 1980), and increased investment in immune function by longer lived (Johnson et 
al. 2012) and larger individuals (Downs et al. 2020).  Similarly, species with larger litter sizes tend to have 
lower investment in immune function (Johnson et al. 2012), and we show they are more likely to be 
susceptible to Bsal.  These results are in accordance with trait based modeling done for Bd susceptibility by 
Bancroft et al. (2011) that showed species with large body sizes and clutch sizes are more susceptible to Bd 
infection.  Bancroft et al. (2011) also propose that large clutch sizes indicate species spend a longer time in 
amplexus which increases contact between individuals as another mechanism for driving chytrid infection.  
In contrast, Bielby et al. (2008) found that small clutch sizes lead to species declines in species with Bd, 
which considers both species susceptibility to disease and population dynamics.  However, as rationalized 
by Bancroft et al. (2011), the finding in Bielby et al. (2008) may be confounded by the fact that smaller 
population sizes driven by small clutch sizes are more at risk of population declines, which outweighs the 
decreased susceptibility of these species with small clutch sizes to Bd. 
 
In the present study our definition of susceptibility defines the first level of possible response of salamanders 
to the Bsal pathogen, which is to be infected or not.  However, among the salamanders that are susceptible 
to Bsal there are differences in the degree to which Bsal affects species.  For example, some salamanders are 
asymptomatic to infection, while other salamanders show clinical signs of infection but limited mortality 
(Martel et al. 2014).  Future work should examine traits predicting to what degree salamanders respond to 
Bsal infection, which would expand on the present definition of susceptibility and provide a more focused 
view of susceptibility across species.  Such work would require more experimental data to be available, such 
as the data in Carter et al. (2019) and Martel et al. (2014), that determines the level of susceptibility of some 
species.  The main issue with this data is that an individual’s response to infection varies significantly across 
experimental conditions, such as temperature (Sauer et al. 2020). Therefore, a standardized experimental 
approach is also necessary. 
 
Nevertheless, the present study begins to elucidate which areas in the country are inhabited by species that 
are at all susceptible to Bsal infection. We show that the areas with the most susceptible salamanders 
correspond to areas of high salamander species richness, Bsal suitability, and risk for Bsal infection, which 
are the Appalachian mountain region, Gulf and southeastern Atlantic coasts, and the Pacific Northwest. Other 
studies estimating Bsal risk in the US focused on the impact of trade on Bsal spread (Richgels et al. 2016, 
Yap et al. 2015). Our results, which include both species traits driving susceptibility and Bsal environmental 
suitability, largely corroborate these findings, highlighting these same areas plus the coast of California as 
potential hotspots for Bsal infection.  Given widespread agreement among multiple spatial and biological 
risk assessments of Bsal, there is growing consensus that conservation efforts should be prioritized to 
particular areas with both high invasion risk from trade and high susceptibility of salamander species to Bsal 
infection.  To this end, we provide all of our final datasets, including raster data for Bsal suitability, 
predictions for which species are most susceptible around the globe, and final raster risk data (Supplementary 
information), which may generate tailored data visualizations most relevant to inform local conservation and 
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research efforts.  With this information, conservationists and researchers can use this study as a guide for 
directing their efforts in the future.  
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APPENDIX 
 
TABLE 1. Model evaluation metrics for the ENM in the native and invasive ranges. 
 

 Model evaluation metric 

Native range Invasive range 

Threshold AUC TSS Omission rate Omission rate 

Minimum 
presence 0.90* 0.38 0.03 0.05 

Lowest 10% of 
presence 0.52 0.12 0.11 

Maximum 
specificity and 

sensitivity 
0.69 0.18 0.05 

*AUC not defined for a threshold 

 
TABLE 2. A comparison of the observed infected status for species with available test data in the literature 
and the predicted infection status of those species by the BRT model. 
 

  Observed infection status 

  Positive Negative 

Predicted infection status 
Positive 40 6 

Negative 2 47 

 

 


