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Abstract. Lake-rich landscapes operate as socio-ecological systems (SESs), with complex interactions 
between humans and fish populations which present a variety of unique problems from the perspective of 
recreational fishery management. Management and regulation are moving from one-size-fits-all (OSFA) to 
aggregated management, where similar lakes share the same policy (Ostrom 2009). However, the criteria 
for effectively sorting and sizing aggregated policies have not been fully considered. To explore the 
differences in utility of small-scale and OSFA management policies, an agent-based model was 
implemented to compare the performance of different aggregations at increasingly variable angling pressure 
and intrinsic growth rates. Instead of simulating policies as a static submodel, agents make flexible, reactive 
policy decisions. Along with simple equations, the model accurately reflects patterns observed in lake-rich 
landscapes. Simulations suggest individual-level management consistently performs better than all 
aggregation setups as intrinsic growth rates vary. However, aggregates and individual-level management 
unexpectedly reached optimal levels of performance at different variabilities of angling mortality. Although 
the results may be influenced by artifacts within the model, these simulations present a novel way to 
approach modeling recreational fisheries policy.    
 

INTRODUCTION 
 
With rapid changes in carbon emissions, human populations, and pollution, effective policies are necessary 
to maintain sustainable use of common pool resources. Understanding the proper management of harvesting 
common pool resources from socio-ecological systems is a critical aspect of developing environmental 
policy and will frame societal attitudes towards common pool resources in the near future (Ostrom 2007). 
However, common pool resources are often socially, spatially, and temporally complex enough to create 
challenges in sustainable management (Ostrom et al. 1994, Solomon et al. 2016).   
 
Recreational fisheries in lake-rich landscapes are a common pool resource with significant value. They can 
be the economic backbone of towns and cities that rely on anglers to generate revenue for local businesses 
(Liddle 1997). Recreational fisheries can also be a great cultural influence and recreational fishing can be 
an important activity for leisure and community building (Carpenter and Brock 2004, Solomon et al. 2016). 
Although recreational fisheries possess great societal value, governance is difficult given their open-access 
and common pool nature.  
 
Proper governance poses such a challenge because lake-rich landscapes are SESs with nuanced 
heterogeneous ecological interactions. The high mobility of humans between lakes links these ecosystems 
together, altering the catchable populations of fish across lake districts (Solomon et al. 2016). Lake districts 
face environmental pressure from lakeshore development and recreational angling, but the magnitude of 
these impacts can vary across the landscape (Ziegler et al. 2017). Combined with the limited budget of 
managers to maintain sustainable fish populations, the predatory behavior of anglers, and disrupted food 
webs, the continued instability of recreational freshwater fisheries seem far less surprising (Post et al. 2002).  
 
Although recreational fisheries have been managed in one-size-fits-all (OSFA) policies, where every lake 
in a system is managed in an identical way, modern management has emphasized creating policies at a
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smaller scale. One of Wisconsin’s primary fisheries research goals includes developing a methodology to 
classify lakes, which encourages flexibility in policy implementation (Wisconsin DNR 2007). Likewise, 
Minnesota set evaluating experimental and special regulations as a high priority for fisheries management 
(Minnesota DNR 2005).  The movement towards more specialized policy makes sense in the context of 
recreational fisheries. Lakes within a lake-rich landscape may have variable rates of recruitment and 
fecundity in their catchable fish populations, providing initial conditions for how quickly a lake’s 
population can be exploited. Consequently, this can influence where anglers with different preferences 
choose to fish, and how angling pressure varies across the landscape (Carpenter and Brock 2004). This 
heterogeneity in biological and recreational factors means that OSFA policies are not able to adequately 
manage lake-rich landscapes to maximize fishing opportunity across all lakes, and that the management 
policies of lakes will need to be dynamic. Therefore, the best management policy would be to scale effort 
to the biological productivity and angling pressure of individual lakes within a lake-rich landscape (Post 
and Parkinson 2012).  
 
However, individual-level management policies may not be feasible in many circumstances, especially 
under limited funding. Lake-by-lake management can be overwhelming for fisheries managers and 
confusing for anglers. Tightening restrictions on one lake could also cause a shift in angling pressure across 
the landscape, which can be spatially and temporally unpredictable. Additionally, more complex regulations 
could increase individual costs on anglers, decreasing the total number of anglers and negatively impacting 
local economies that rely on recreational fishing (Lester et al. 2003, Carpenter and Brock 2004). Ideally, a 
balance could be struck between maximizing the fishing potential of every lake while limiting the number 
of unique policies to reduce costs for managers and anglers. As grouping lakes into aggregation may be the 
best compromise between OSFA and individual-level management, determining these aggregations should 
be assembled according to how heterogeneous recreational fisheries are in these respects may determine 
the optimum amount of policy aggregation for the given lake-rich landscape.  
 
No prior research has looked into the degree of heterogeneity in a lake-rich landscape to optimize different 
scales of policy aggregation. Realistic agent-based models have been used in recreational marine fisheries 
to determine optimum policies, but have a greater focus on the heterogeneity of angler distribution and 
effort instead of fish population productivity (Gao and Hailu 2012, 2013, 2018). Other work has been 
guided by a greater focus on demonstrating the utility of active management of recreational fisheries and 
how angler decisions shape fish populations on landscapes (Schuhmann et al. 2001, Beard et al. 2003, Cox 
et al. 2003, Post and Parkinson 2012, Stoeven 2014, Askey 2016, Dabrowksa et al. 2017). More specific 
studies have looked deeper into specific interactions between human and natural systems in lake district 
SESs (Ziegler et al. 2017). Current work is being done to fully explore the socio-ecological dynamics of 
freshwater recreational fisheries to further develop SES theory (Solomon et al. 2016). 
 
To analyze the degree of aggregation needed to best manage lake districts of varying heterogeneity, an 
agent-based model (ABM) will be implemented. ABMs provide abstractions of complex systems by 
utilizing independently acting agents that make decisions based on their perception of the environment 
around them. An agent-based approach is ideal for representing management behaviors and incorporating 
stochasticity to examine the heterogeneity of a lake district SES and emerge landscape-level responses to 
policy aggregation. How will the heterogeneity of intrinsic growth rates and angler effort on a lake-rich 
landscape for aggregated management to be beneficial? 
 

METHODS 
 

Overview and Rationale 
 
This model is designed to explore how heterogeneous must the productivity and angler effort on a lake-rich 
landscape be to encourage higher policy disaggregation. The objective of lake associations in the model is 
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to maintain their fish populations at the biomass that produces maximum sustainable yield (MSY) through 
stocking fish and improving aquatic habitat. MSY was chosen as the measure of performance for 
associations because it is an ideal goal for a harvest-based recreational fishery, which is the case for panfish 
and perch-related species, and MSY matches the overall complexity of the parameters and functions of the 
model. 
 
The model can be broken into 3 interacting submodels. A fish population submodel uses a modified 
Gordon-Schaeffer biomass model to describe the dynamics of the fished population and the abundance of 
fish at a particular moment. An angling submodel is a simple equation to scale the number of fish removed 
from a lake by population size and catch per unit effort (CPUE). Lastly, a management submodel simulates 
adaptive and cooperative management through evolutionary programming techniques to determine policies 
for the next time step. 
 

Fish Population Dynamics 
 
A change in the fish population for each association will be calculated through a modified Gordon-Schaeffer 
biomass equation that represents simplified dynamics of fish populations observed in recreational fisheries 
(Solomon et al. 2016).  
 

𝑁𝑁 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
(𝐾𝐾 − 𝑁𝑁)

𝐾𝐾
𝑁𝑁 + 𝑆𝑆 + 𝑀𝑀𝐴𝐴 

 
Where rmax is maximum growth rate, K is carrying capacity, S is the number of fished stocked, and MA is 
mortality due to angling. Since the equation is based on logistic growth, fish populations are ultimately self-
regulating. However, the management submodel can augment the population by stocking, which directly 
adds fish to the population, and improving habitat, which increases the rmax value. Improving habitat has 
been shown to increase the resiliency of fish populations to larger shocks (Carpenter and Brock 2004). For 
the sake of simplicity, this habitat effect works differently within the model, as improving habitat acts to 
increase the intrinsic growth rate of fish populations. The angling submodel interacts with the population 
through the angling mortality term.  
 
Initial rmax values are determined by random number selections from normal distributions. These normal 
distributions can be manipulated to replicate the dynamic nature of lake-rich landscapes and allow the 
model to determine effective aggregate policies for different levels of heterogeneity in the productivity of 
a fish population.  
 
The carrying capacity for each lake initialized as a random value between 50 – 75% larger than the starting 
population. Assuming all lakes start below carrying capacity is not greatly consequential, as the model has 
a burn-in period before it reaches a stable state. Initializing the carrying capacity in a more complex manner 
would only change conditions during the burn-in period, but not have any effect on the results.  
 

Angling 
 
The angling submodel is represented by the following equation adapted from code: 
 

𝑀𝑀𝐴𝐴 = 𝑁𝑁 ∗ (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑆𝑆 𝐹𝐹𝑟𝑟𝑆𝑆𝐹𝐹𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑉𝑉𝑆𝑆𝑟𝑟𝑆𝑆𝐹𝐹𝑉𝑉)) 
 

Where randomNormal represents a function that generates a normal distribution with a mean and standard 
deviation of the two parameters. CPUE Scaling Factor is a range from 0 to 1, representing what proportion 
of fish anglers catch for a given time-step. CPUE Variability functions as the standard deviation for the 
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distribution and denotes how variable the anglers’ harvest will be from time-step to time-step. The normal 
distributions are dynamic, as the fish population changes at every time-step. 
 

Management Submodel 
 

Management: Population Estimations and Comparisons 
 
Initially, associations will estimate the population of fish in their respective lakes. Estimates will be drawn 
from a normal distribution with the mean value being the actual fish population and a standard deviation 
that will determine the accuracy of the estimation. If a simulation includes aggregates, a mean estimated 
population will be calculated from these estimates for each aggregation to inform their management 
decisions. Once the estimates have been made for each association, the associations will determine how 
close they are to their objective, which is to manage their fish populations at maximum sustainable yield 
(0.5 * carrying capacity) as closely as possible, referred to as their objective population. Given the fishing 
culture of lakes in the U.S., this would be a reasonable management goal for some fish species that are 
harvested regularly, like crappie, walleye, and perch. Their closeness to MSY for a given time step is found 
through an equation that yields an index: 
 

𝑆𝑆𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 =  
𝑟𝑟𝑉𝑉𝑜𝑜𝑖𝑖𝑆𝑆𝐹𝐹𝑆𝑆𝑜𝑜𝑖𝑖 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟 − 𝑖𝑖𝑒𝑒𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟𝐹𝐹𝑖𝑖𝑟𝑟 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟

𝑟𝑟𝑉𝑉𝑜𝑜𝑖𝑖𝑆𝑆𝐹𝐹𝑆𝑆𝑜𝑜𝑖𝑖 𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝐹𝐹𝑆𝑆𝑟𝑟𝑟𝑟
 

 
This index will be used to determine the intensity of management for the next time step, as well as how 
much the management policy will change moving forward.  
 

• At index = 1, the estimated population is near 0 and likely to collapse. 
 

• At index <= -1, the estimated population is much higher than the objective population. 
 

• At index = 0, the objective population equals the estimated population and the lake is perfectly 
managed. 
 

If the simulation is using aggregates, indices will be averaged for all associations in an aggregate for later 
changes in management policy.  
 

Management: Point Allocation and Spending 
 

The index is used to determine how many “policy points” an association will have to work with. Policy 
points act as a discrete currency that can be used for stocking fish or improving aquatic habitat, which are 
management actions that can be taken by associations (Solomon et al. 2016). How much each policy point 
is “worth” will depend on the species being stocked. For example, the Wisconsin DNR stocks about 132 
largemouth bass per month in Vilas County. If using a system of 100 maximum policy points per association 
on a monthly time step, then it may be reasonable to have 1 point = 1 stocked largemouth bass. However, 
it is difficult to quantify the impact of a discrete improvement of aquatic habitat on a population’s intrinsic 
growth rate. In a system of 100 maximum points per association, having 1 point = 0.00001 increase in the 
intrinsic growth rate produces reasonable results.  
 
The policy point system allocates a maximum of 100 points to each association, since the associations will 
spend all of their allocated policy points per time step. This means an association may have considerably 
less points depending on their index. This allows policy points to act as a simplified management budget 
by making some assumptions about how associations/agencies spend their money to manage lakes. If a 
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lake’s fish population is near collapse (index = 1), the association/manager will likely want to spend as 
much money as possible to stock fish, improve habitat, and change policy. Conversely, if a lake is 
overpopulated with fish (index <= -1), or are close to MSY (index = 0), the association/manager will not 
spend any money to stock fish, improve habitat, or change policy, since angling mortality will bring the 
estimated population closer to the objective population, or the association is already meeting their goal.  
 
An association’s index can be used to determine how many policy points they are allocated: 
 

𝐶𝐶𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆𝑉𝑉 𝐶𝐶𝑟𝑟𝑆𝑆𝑟𝑟𝐹𝐹𝑒𝑒 = 50(𝑆𝑆𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖) + 50 
 
Once the associations are allocated their policy points, they will spend their points based on their policy. 
Policies are implemented as the proportion of points spent towards stoking fish and improving habitat. 
 

Management: Altering Policies 
 

An association’s policy will change depending on their index from the current time-step. The policy will 
change depending on where the index falls into various intervals (Figure 1). A randomly determined change 
in policy represents experimentation in management technique. Although there is more to experimental 
management than random decisions, this was the most accurate way to represent this in the model. A change 
in policy to partially copy the best performing association could represent larger scale shifts in management 
practices and the adoption of best practices.  
 
As an association strays further from MSY, they make greater changes to their policy (Table 1). This 
simulates collaborative and active management as associations that perform poorly adopt a large portion of 
policy from the best performing association. Regardless of performance, all associations have some random 
element in their policy to represent active, experimental management.    
 
Parameters and Simulation Procedure 
 
All simulations were run with the nominal values unless otherwise noted (Table 2). Every set of 
parameters was simulated 30 times to ensure patterns were consistent and to reduce standard error. 
 

RESULTS 
 

Model Function 
 

This primary simulation demonstrates basic interactions between the angling and fish dynamics submodels, 
as well as limitations in the management submodel. With all stochastic elements removed from the model, 
it performs as anticipated. When the mean angling mortality was at the low end of the parameter range, lake 
associations performed poorly (Figure 2). At low mean angling mortality, the intrinsic growth rate of the 
fish population is greater than the rate of angling mortality, so the population reaches and maintains carrying 
capacity. At high mean angling mortality, the fish were removed faster than they are replaced by stocking 
and natural reproduction, and the populations crashed initially. However, managers were able to develop 
policies to combat the high angling pressure over time. These responses mirror the interactions between 
fish populations and anglers in reality, but the model produces a more variable response in the moderate 
range of angling mortality where fish are removed at a rate close to the intrinsic growth rate. Managers 
create policies to maintain an equilibrium the populations but are unable to move the population towards 
the optimal size for maximum sustainable yield (MSY). The stability in the objective indices shows that 
the model does not encourage boom-bust management, as the objective indices hardly fluctuate over time. 
However, it also shows that the managers do not have the means to influence the populations effectively, 
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as they only receive enough policy points to reach an equilibrium with the intrinsic growth rate and angling 
mortality.  
 
A moderate variation in angling mortality yields the best performance from managers (Figure 3). As in the 
first simulation, managers were unable to attain optimal populations due to drawbacks of the management 
submodel. At low CPUE variabilities, managers are changing their policies too quickly and are more apt to 
overshoot or undershoot their management. Conversely, at high CPUE variabilities the fish population 
changes too quickly for managers to keep up with implementing appropriate policies. The best performance 
comes from moderate variability, where the speed at which managers change their policies and fish 
populations change reach an equilibrium. This partially validates the logic of the fish population dynamics 
model. As any managed resource becomes more variable, management will become less beneficial. 
Additionally, implementing policies at too fine of a scale will lead to poor management. The managers’ 
faulty performance at low CPUE variability can be explained by the faults in the management submodel, 
where managers are only allowed to make policy decisions according to the previous time-step instead of 
long-term trends.  
 

Detail of Angling Submodel 
 
In early iterations of the model, it was assumed that angling mortality was random, due to the numerous 
factors that could go into an angler’s catchability at any given time-step. However, this produced results 
that were contrasted existing findings, as the most aggregated form of policy outperformed completely 
disaggregated policy at high angling mortality (Figure 4). The assumption of random angling allowed 
aggregates to manage their individual populations as one combined population. The angling mortality is 
not tied to any lake-level variable, so the angling mortality from one lake becomes interchangeable with 
the angling mortality from any other lake under the same management.   
 
The angling submodel was changed to establish a relationship between angling mortality and the size of the 
fish population for each individual lake. This caused the model produces more intuitive results (Figure 5). 
The parameter on the x axis has changed to accommodate the updated submodel, but “Mean Angling 
Mortality” and “CPUE Scaling Factor” function in the same manner, as they indicate the magnitude of 
angling pressure. Aside from the results of the two lowest CPUE scaling factors, which can be accounted 
for by model artifacts explained in Figure 1, the new angling submodel shows individual-level policies 
significantly outperforming all higher levels of aggregation as the scaling factor is incremented. 
 
Results significantly improved by adding more detail to the angling submodel, which shows that 
understanding how anglers affect with fisheries with greater depth is an important aspect of how this system 
functions.   
 

Optimum Aggregation for Across Levels of Heterogeneity 
 

As the range of aggregations remained reasonable consistent as rmax varied more, individual-level 
management performed noticeably better in every case (Figure 6). Considering the random grouping of 
associations into aggregations, the close means of all aggregates makes sense. Regardless of the number of 
associations in an aggregate, the variability of r-max will be consistent across aggregations, due to the 
normal distribution that was used to assign initial rmax values to the associations. This means that 
overarching policies used in aggregates will be equally ineffective regardless of aggregate size. Individual-
level management works best in this scenario as policies will not have to make compromises to account for 
any variability in rmax values.  
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As the CPUE scaling factor becomes more variable, individual-level management and high aggregations 
reach points of optimization at different levels of variability (Figure 7). Individual-level management 
optimizes sooner due to having a smaller total fish population to manage compared to higher aggregations. 
Small populations are more sensitive to changes in angling mortality and their policies follow trends in 
population size more closely than high aggregations, which use the average population sizes to inform their 
policy.  
 
This difference in how often policies change in high and low aggregations is illustrated by the standard 
deviations (Figure 8). High aggregations have lower standard deviations because they manage for the larger 
mean population of many lakes that exhibit a less drastic response under increased variability of angling 
mortality. This is detrimental at low variability because high aggregations lack the sensitivity in their 
management to follow small-scale fluctuations in populations. As a result, high aggregations perform sub-
optimally at low variability, but are more consistent at high variability. Alternatively, individual-level 
management performs better at low variability, but quickly break down at high variability. Individual-level 
management has a higher sensitivity for variability in angling mortality due to managing smaller 
populations than their high aggregation counterparts. This sensitivity allows them to make more effective 
policies at low variabilities because they can create more precise policies without being negatively impacted 
by a change in the size of their population from a high angling mortality event. The same sensitivity and 
precision in policy is what causes individual-level management to perform poorly at high variability. 
Individual-level management is constantly overcompensating in policy when variability in angling 
mortality is too high. Managers in the model only access information from the last time-step to create new 
policies. Since managers are limited in their information, new policies are implemented without considering 
long-term trends and can be vary greatly. 
 

DISCUSSION 
 
This work shows the effectiveness of different recreational fisheries aggregations under variable 
parameters. Although OSFA management has long been known to be ineffective at preserving recreational 
fisheries, this model also demonstrates that even smaller sized aggregations may provide much of an 
improvement as the natural productivity and angling mortality vary (Cox et al. 2003, Carpenter and Brock 
2004). Individual-level management, although optimal within this model, may not be logistically feasible 
to implement on large-scale landscape. A new idea for management, referred to as “buffet-style”, may 
provide a compromise between the extreme ends of aggregation by grouping lakes into managing lakes for 
specific classes of anglers (Van Poorten and Camp 2019).  
 
However, the buffet-style model did not incorporate elements of adaptive and collaborative management, 
which seem to be predominant concepts in modern natural resources management. This current model 
demonstrates that ideas from adaptive and collaborative management can be implemented fairly simply 
when used in an agent-based context. One drawback of implementing these management ideas is the lack 
of empirical studies to understand how these kinds of management should be implemented in a model. 
Adaptive and collaborative management resulted in high standard deviations to the outputs of the model, 
as thresholds for when policies should change and how often managers should communicate were assumed 
to be arbitrary.   
 

Model Limitations and Areas for Improvement 
 
This model, as well as others like it, must formulate a quantitative management objective (Johnston et al. 
2010). This can be problematic for models as there are many different factors that may guide management 
objectives. Likewise, simplifications of how lake-rich landscapes function were made to better understand 
model outputs, but details like ecological interactions, motivations of different angler classes, and 
management funding certainly play a role determining the effectiveness of aggregation. As interpreted in 
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this model, management only occurs at the association level through actions that associations can take. 
These actions, stocking and improving habitat, are methods for managing fish populations and do little by 
way of managing anglers.  
 
Refining the management submodel would yield the greatest improvements for the model’s performance. 
Specifically, determining thresholds for how often management should adapt and associations should 
communicate would provide more validity towards the model’s logic. Another shortcoming lies within the 
policy point system. As a basic economic system, it is difficult to quantify the monetary cost of management 
in terms of policy points. This caused trouble, especially as managers could have the proper policy needed 
to correctly alter their fishery but did not have the necessary funding to make those changes. Requiring 
managers to spend all of their policy points every time step may be too rigid and could be implemented as 
an additional adaptive behavior for associations.  
 

Future Research 
 
There are a variety of options for future research from this model. Using the same model, adaptive and 
cooperative management could be more fully explored, such as determining how often managers should 
share information, how often policies should adapt, and how experimental management should be to yield 
the best outcomes. Interesting findings could come from grouping associations into aggregations based on 
varying criteria to determine the best way to create aggregations, and how well their performance compares 
to individually managed lakes. More interesting ideas could come from incorporating anglers as agents, to 
represent various classes of anglers that can move around the landscape. Additionally, the model could be 
spatially explicit to see how angler mobility and accessibility contribute to management.  
 

Conclusion 
 
Recreational fisheries are in a widespread collapse as angler catch rates have fallen significantly over time 
(Post et al. 2002). As biological and ecological systems move at their own slow pace, short-term fixes will 
likely not be enough to restore these recreational fisheries. Novel, thoughtful changes to how we manage 
this resource will need to be made to see a resurgence of healthy recreational fisheries, for the sake of the 
communities that rely on these fisheries. Greater effort must be made in modelling to best understand the 
theoretical backing for the new ideas in fisheries management and assist in carefully transitioning 
recreational fisheries to a better, sustainable future.  
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APPENDIX 
 
TABLE 1. The ranges of objective indices, or association performance, and how they relate to dynamic 
policy changes. Worse performing associations copy more of their policy from the best performing 
associations. The best performing associations retain more of their policies, with minor variations to 
emulate experimentation.  
 

Range of Objective Index Redistribution of Policy Proportions 
1.0 – 0.75 50% Best Practice, 50% Random 
0.74 – 0.50 25% Current Policy, 50% Best Practice, 25% Random  
0.49 – 0.25 80% Current Policy, 20% Random 
0.24 – 0.05 90% Current Policy, 10% Random 
0.04 – 0.00 95% Current Policy, 5% Random 

 
 
TABLE 2. Nominal values and explanations for model parameters. 
 

Variable Explanation Value 
Num-associations Number of associations 12 
Num-aggregates Number of aggregates 12 

Mean-starting-fish-pop Average starting fish population 500 
St-dev-starting-fish-pop Variability of starting population 

from lake-to-lake 0 

Mean-r-max Average intrinsic growth rate 0.40 
St-dev-r-max Variability of intrinsic growth rate 

from lake-to-lake 0 

CPUE-scaling-factor Proportion of fish removed from a 
population 0.3 

CPUE-variability Variability in the proportion of fish 
removed from a population 0 

Num-months Number of time-steps/duration of 
simulation 600 

Ticks-per-new-policy How many time-steps are between 
each policy update 1 
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FIGURE 1. How policy points, or the means to enact policy, an association receives for a time-step is related 
to their objective index, how well the association currently performs. The objective index also determines 
how their policy will change moving forward. As associations perform worse and their objective indices 
increase, they have more means to implement their policies. 
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FIGURE 2. When the CPUE scaling factor is high, meaning anglers remove fish very effectively, 
associations performed fairly well, maintaining an objective index that is close to zero. At lower levels of 
the CPUE scaling factor, fish populations grew too large and association performance worsened. 
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FIGURE 3. At moderate levels of CPUE variability, or how variable the proportion of fish removed from a 
population, associations performed best, maintaining an objective index close to zero. 
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FIGURE 4. In preliminary versions of the model, angling mortality was random and average objective 
indices, how the associations performed, were illogical. Higher numbers of aggregates, meaning smaller 
groupings of associations, should perform better across all levels of mean angling mortality. Error bars 
omitted and absolute values for objective indices used for clarity.  
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FIGURE 5. Response of associations when angling mortality was linked to fish population size (the current 
version of the model). Here, the model shows a more intuitive response. Across nearly all levels of the 
CPUE scaling factor, the proportion of fish removed from a population, the highest number of aggregates 
(smallest grouping of associations) performs consistently better. Error bars omitted and absolute values for 
objective indices used for clarity.  
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FIGURE 6. Across all levels of variability in rmax, the highest number of aggregates had the lowest objective 
index and performed best. 
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FIGURE 7. At low CPUE variability (low variability in the number of fish removed) the highest number of 
aggregates had a lower objective index, outperforming the other groups, until a threshold in variability was 
met.  
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FIGURE 8. Comparing the objective index, or performance, of the highest and lowest number of aggregates. 
The lowest value for the objective index, indicating the best performance, for each group depends on the 
CPUE variability, or how variable the proportion of fish removed from a population. Each group performs 
best at different levels of variability, suggesting that a higher number of aggregations may be a better 
management choice in certain situations. 

 
 
 
 
 
 
 
 
 
 

 


